sexta-feira, 6 de dezembro de 2019

VALOR NÚMERICO DE UMA EXPRESSÃO ALGÉBRICA

Para obter o valor numérico de uma expressão algébrica, você deve proceder do seguinte modo:

1º Substituir as letras por números reais dados.
2º Efetuar as operações indicadas, devendo obedecer à seguinte ordem:

a) Potenciação
b) Divisão e multiplicação
c) Adição e subtração

IMPORTANTE!
Convém utilizar parênteses quando substituímos letras por números negativos

Exemplo 1

Calcular o valor numérica de 2x + 3a
para x = 5 e a = -4

2.x+ 3.a
2 . 5 + 3 . (-4)
10 + (-12)
-2

Exemplo 2

Calcular o valor numérico de x² - 7x +y
para x = 5 e y = -1

x² - 7x + y
5² - 7 . 5 + (-1)
25 – 35 -1
-10 – 1
-11



Exemplo 3

Calcular o valor numérico de :
2 a + m / a + m ( para a = -1 e m = 3)

2. (-1) + 3 / (-1) + 3
-2 + 3 / -1 +3
½

Exemplo 4

Calcular o valor numérico de 7 + a – b (para a= 2/3 e b= -1/2 )

7 + a – b
7 + 2/3 – (-1/2)
7 + 2/3 + 1 / 2
42/6 + 4/6 + 3/6
49/6


EXERCICIOS

1) Calcule o valor numérico das expressões:

a) x – y (para x =5 e y = -4) (R:9)
b) 3x + a (para x =2 e a=6) (R: 12)
c) 2x + m ( para x = -1 e m = -3) (R: -5)
d) m – 2 a ( para m =3 e a = -5) (R: 13)
e) x + y ( para x = ½ e y = -1/5) (R: 3/10)
f) a –b ( para a =3 e b = -1/2) (R: 7/2)

2) Calcule o valor numérico das expressões
a) a³ - 5 a (para a = -2) (R: 2)
b) x² - 2y ( para x = -3 e y =5) (R: -1)
c) 3a² - b² (para a = -2 e b = -7) (R: -37)
d) 5a² + 3ab (para a = -3 e b = 4) (R: 19)
e) a² + 4a (para a = 2/3) (R: 28/9)



EXPRESSÕES ALGÉBRICAS

TERMO ALGÉBRICO OU MONÔMIO

Um produto de números reais, todos ou em parte sob representação literal, recebe o nome de monômio ou termo algébrico

Exemplos

a) 7x
b) 4/5 a²
c) -5x²y
d) –xyz

Em todo monômio destacamos o coeficiente numérico e a parte literal (formada por letras)

Exemplo

7x , coeficiente 7 e parte literal x
4/5a² coeficiente 4/5, parte literal a²
-5x²y coeficiente -5, parte literal x²y
-xyz coeficiente -1, parte literal xyz

Obs: todo o número real é um monômio sem parte literal



GRAU DE UM MONÔMIO

O grau de um monômio é dado pela soma dos expoentes de sua parte literal

Exemplo 1

Qual o grau do monômio 7x³y² ?

Solução:

Somando-se os expoentes dos fatores literais,temos 3 + 2 = = 5
resposta 5º



Exemplo 2

Qual o grau do monômio -8a²bc?
Solução:
Somando-se os expoentes dos fatores, temos: 2 + 1 + 1 = 4
resposta 4º grau

Observação:
O grau de um monômio também pode ser dado em relação a uma letra de sua parte literal.

Exemplo 3
7 x³y² - é de 3º grau em relação a x , é do 2º grau em relação a y

EXERCÍCIOS

1) De o grau de cada um dos seguintes monômios:

a) 5x² = (R: 2º grau)
b) 4x⁵y³ = (R: 8º grau)
c) -2xy² = (R: 3º grau)
d) a³b² = (R: 5º grau)
e) 7xy = (R: 2º grau)
f) -5y³m⁴= (R: 7º grau)
g) 6abc = (R: 3º grau)
h) 9x³y²z⁵ = (R: 10º grau)


POLINÔMIO COM UMA VARIÁRIAL

Polinômio é uma expressão algébrica de dois ou mais termos

Exemplos

1) 7x – 1
2) 8x² - 4x + 5
3) x³ + x² - 5x + 4
4) 4x⁵ - 2x³ + 8x² x + 7

Convém destacar que:

- Os expoentes da variável devem ser números naturais 1, 2, 3, 4, ......
- Os polinômios de dois termos são chamados binômios ( exemplo 1)
- Os polinômios de três termos são chamados trinômios (exemplo 2)
- Os polinômios com mais de três termos não tem nomes especiais. (exemplos 3 e 4)

GRAU DE UM POLINÔMIO A UMA VARIALVEL

O grau de um polinômio é indicado pelo maior expoente da variável

Exemplo

a) 7x⁴ - 3x² + 1 é um polinômio do 4º grau
b) x³ - 2x⁵ + 4 é um polinômio do 5º grau Em geral, os polinômios são ordenados segundo as potencias decrescentes da variáveis

Exemplos

5x³ + x⁴ + 6x – 7x² + 2 ( polinômio não ordenado)
x⁴ + 5x³ - 7x² + 6x + 2 ( polinômio ordenado)

Quando um polinômio estiver ordenado e estiver faltado uma ou mais potencias, dizemos que os coeficientes desses termos são zero e o polinômio é incompleto.

Exemplos

x⁴ + 5x + 1 ( polinômio incompleto)
x⁴ + 0x³ + 0x² + 5x + 1 (forma geral ou completa)


TERMOS SEMELHANTES

Dois ou mais termos são semelhantes quando têm a mesma parte literal

Exemplos

a) 5m e -7m são termos semelhantes
b) 2xy³ e 9y³x são termos semelhantes

Obs : não importa a ordem dos fatores literais Não são semelhantes os termos: 4x e 7x² observe que os expoentes de x são diferentes

EXERCICIOS

1) Quais pares de termos são sememlhantes?

a) 7a e 4a (X)
b) 2x² e -6x² (X)
c) 4y e 5y²
d) 8xy e –xy (X)
e) 5a e 4ab
f) 4ab e 5/8 ab (X)
g) 8xy e 5yx (X)
h) 4x²y e –xy
i) xy² e 2x²y
j) 3acb e abc (X)

REDUÇÃO DE TERMOS SEMELHANTES

Quando, numa mesma expressão, tivermos dois ou mais termos semelhantes podemos reduzi-los todos a um único termo, usando a propriedade distributiva

EXEMPLOS

1) 5x +3x – 2x = (5 + 3 – 2 )x = 6x
2) 7xy – xy + 5xy = (7 -1 + 5) xy = 11xy

Conclusão: somamos os coeficientes e conservamos a parte literal

EXERCÍCIOS

1) Reduza os termos semelhantes

a) 8a + 2a = (R: 10a)
b) 7x – 5x = (R: 2x)
c) 2y² - 9y² = (R: -7y²)
d) 4a² - a² = (R: 3a²)
e) 4y – 6y = ( -2y)
f) -3m² + 8m² = (R: 5m²)
g) 6xy² - 8y²x = (R: -2y²x)
h) 5a – 5a = (R: 0)

2) Reduza os termos semelhantes:

a) 7x – 5x + 3x = (R: 5x)
b) 2y – y – 10y = (R: -9y)
c) 4a + a – 7a = (R: -2a)
d) x² + x² - 2x² = (R: 0 )
e) ab – ab + 5ab = (R: 5ab)
f) 4x³ - x³ + 2x³ = (R: 5x³)
g) 10x – 13x – x = (R: -4x)
h) 8x – 10x + 4x = (R: 2x)

3) Reduza os termos semelhantes:

a) 8x + 1x/2 = (R: 17x/2)
b) 3a - 2a/3 = (R: 7a/3)
c) 1x/2 + 1x/3 = (R: 5x/6)
d) 2x/3 - 1x/2 = (R: 1x/6)
e) 1y/2 – 2y/5 = (R: 1y/10)
f) 2x + 1x/2 – 3x/4 = (R: 7x/4)

Há casos em que numa expressão há termos diferentes e termos semelhantes entre si. Observe que a redução só pode ser feita com termos semelhantes.

Exemplo 1

7x + 8y – 2x – 5y
7x -2x + 8y -5y
5x + 3y

Exemplo 2:

4a³ + 5a² + 7a – 2a² + a³ - 9a + 6
4a³+ a³+ 5a²– 2a²+ 7a- 9ª + 6
5a³ + 3a² - 2a + 6

EXERCÍCIOS

1) Reduza os termos semelhantes:

a) 6a + 3a – 7 = (R: 9a - 7)
b) 4a – 5 – 6a = (R: -2a - 5)
c) 5x² + 3x² - 4 = (R: 8x² - 4)
d) X – 8 + x = (R: 2x -8)
e) 4m – 6m -1 = (R: -2m -2)
f) 4a – 3 + 8 = (R: 4a + 5)
g) x² - 5x + 2x² = (R: 3x² - 5x)
h) 4a – 2m – a = (R: 3a - 2m)
i) Y + 1 – 3y = (R: -2y + 1)
j) X + 3xy + x = (R : 3x + 3xy)

2) Reduza os termos semelhantes

a) 7a – 2a + 4b – 2b = (R: 5a + 2b)
b) 5y² - 5x – 8y² + 6x = (R: -3y² + 1x)
c) 9x² + 4x- 3x² + 3x = (R: -6x² + 7x)
d) X + 7 + x – 10 – 1 = (R: 2x -4)
e) x³ - x² + 7x² + 10x³ + 4 = ( -11x³ + 6x² + 4)
f) 2x³ - 7x² + 4x – 2 + 8 – 3x² = ( R:
g) 4a²b – 3b² - 6b² - 2a²b – 1 = (R:

3) Reduza os termos semelhantes

a) 1/2x – 1/3y + x=
b) 4a- 1/2a + 5 - 1/3 =
c) 1/2a- 3a² + a + 3a = 9ª – 6a²
d) 4y – 3/5y + 1/2 + 1 = 34y + 15
e) 2m + 3 + m/2 – ½ = 10m +10


ELIMINAÇÃO DE PARÊNTESES, COLCHETES E CHAVES

Vamos lembrar que:
1) Ao eliminar parênteses procedimentos pelo sinal positivo(+),não troque os sinais dos termos incluídos nos parênteses.

Exemplo

2x + (5x – 3)
2x + 5x – 3
7x – 3

2) Ao eliminar parênteses precedidos pelo sinal negativo ( - ), troque os sinais dos termos incluídos nos parênteses.

Exemplo

7x – (4x – 5)
7x – 4x + 5
3x + 5

Obs: Para a eliminação de colchetes e chaves são validas as regras acima.

Exemplos 1

5x + (3x -4) – (2x – 9)
5x +3x – 4 -2x + 9
5x + 3x -2x -4 + 9
6x + 5

Exemplo 2

8x – [-2x + (10 + 3x – 7)]
8x –[-2x +10+3x-7]
8x +2x -10-3x+7
8x + 2x – 3x -10 +7
7x -3

Exemplo 3

2x² + { 3x – [ 6x – ( 3x² + x)]}
2x² + { 3x – [ 6x – 3x² - x]}
2x² + { 3x – 6x + 3x² + x}
2x² + 3x – 6x + 3x² + x
2x² + 3x² + 3x -6x + x
5x² -2x

EXERCÍCIOS

1) Reduza os termos semelhantes nas seguintes expressões algébricas:

a) 6x + (2x – 4) – 2 = (R: 8x – 6)
b) 7y -8 – (5y – 3) = (R: 2y – 5)
c) 4x – ( -3x + 9 – 2x) = (R: 9x – 9)
d) 3x – (-2x +5) – 8x + 9 = (R: -3x + 4)
e) 4x – 3 + (2x + 1 ) = (R: 6x – 2)
f) ( x + y ) – ( x + 2y) = (R: -y)
g) (3x – 2y) + ( 7x + y) = (R: 10x – y)
h) –(8x + 4) – ( 3x + 2) = (R: -11x – 6)

2) Reduza os termos semelhantes nas seguintes expressões algébricas

a) 5x + ( 3x – 2) – ( 10x – 8) = (R: -2x + 6)
b) 6x + (5x – 7) – (20 + 3x) = (R: 8x -27)
c) ( x + y + z ) + x – ( 3y + z) = (R: 2x – 2y)
d) (m + 2n ) – ( r - 2n ) – ( n + r) = (R: m + 3n – 2r)
e) –(6y + 4x ) + ( 3y – 4x ) – ( -2x + 3y) = (R: -6y – 6x)

3) Reduza os termos semelhantes nas seguintes expressões algébrica:

a) 6x² - [ 4x² + ( 3x – 5 ) + x = (R: 2x² - 4x + 5)
b) 3x + { 2y – [ 5x – ( y + x )]} = (R: -x + 3y)
c) -3x + [ x² - ( 4x² - x) + 5x] = (R: -3x² + 3x)
d) Xy – [2x + ( 3xy – 4x ) + 7x ] = (R: -2xy - 5x)
e) 8x – [( x + 2m) – ( 3x – 3m)] = (R: 10x – 5m)
f) X – ( b – c) + [ 2x + ( 3b + c) ]= (R: 3x + 2b + 2c )
g) –[x + ( 7 – x) – ( 5 + 2x) ]= (R: -2x -2)
h) {9x – [ 4x – ( x – y ) – 5y ] + y} = (R: 6x + 5y)
i) ( 3x + 2m) – [ (x – 2m) – ( 6x + 2m) ] = (R: 8x + 6m)
j) 7x³ - { 3x² -x – [ 2x – ( 5x³ - 6x²) – 4x ]} = (R: 2x³ + 3x² - x)
k) 2y – { 3y + [ 4y – ( y – 2x)+ 3x ] – 4x } + 2x = (R: 11y – 4x)
l) 8y + { 4y – [ 6x – y – ( 4x – 3y ) – y ] -2x } = (R: 6x + 4y)
m) 4x – { 3x + [ 4x – 3y – ( 6x – 5y ) – 3x ] – 6y }
n) 3x – { 3x – [ 3x – ( 3x –y ) – y ] –y } - y

4) Reduza os termos semelhantes:
a) -2n – (n – 8) + 1 = (R: -3n + 9)
b) 5 – ( 2x – 5) + x = (R: -x +10)
c) 3x + ( -4 – 6x) + 9 = (R: -3x +5)
d) 8y – 8 – ( -3y + 5) = (R: 11y – 13)
e) X – [ n + (x + 3) ] = (R: -n -3)
f) 5 + [x – ( 3 – x) ] = (R: 2x + 2)
g) x² - [ x – (5 - x²)] = (R: -x + 5)
h) 5x – y – [x – (x - y)] = (R: 5x – 2y)

5) Reduza os termos semelhantes:

a) 2x + ( 2x + y) – ( 3x – y) + 9x = (R: 10x + 2y)
b) 5x – { 5x – [ 5x – ( 5x – m ) – m ] –m } – m = (R: 0)
c) – { 7x – m – [ 4m – ( n – m – 3x) – 4x ] + n } = (R: -8x + 6m -2n)
d) 5xy – { - (2xy + 5x )+ [3y – (-xy +x + 3xy)]} = (R: 11xy + 6x - 3y)

57 comentários:

  1. Este comentário foi removido pelo autor.

    ResponderExcluir
  2. valeu!! vo fazer IF!! tava precisando muito

    ResponderExcluir
  3. muito obrigado mesmo precisava fazer 1 trabalho de matematica e isso foi uma grande ajuda

    ResponderExcluir
  4. Na questão d) 5a² + 3ab (para a = -3 e b = 4) (R: 19), a resposta está errada. O certo é 9.

    ResponderExcluir
  5. Realmente o resutado certo é 9
    45-36=9

    ResponderExcluir
  6. Me ajudou muito,muito obrigada estou me preparando para um Bolsão!

    ResponderExcluir
  7. k) 2y – { 3y + [ 4y – ( y – 2x)+ 3x ] – 4x } + 2x = (R: 11y – 4x)esta errada a resposta deveria ser 11x e 4y então eu estou certa ou errei?
    essa atividade me ajudou muito obrigada so estou confusa nesta letra.

    ResponderExcluir
  8. Muito obrigado !!!! Me ajudou bastante , agra posso estudar com segurança para a prova .

    ResponderExcluir
  9. (Fodasi a matemática) nome ivan james do Brasil, Rio de janeiro, Saquarema.

    ResponderExcluir
    Respostas
    1. Realmente percebe-se que vc não gosta de matemática e nenhum professor vai poder te ajudar, pq primeiro ele vai fazer o que nem seu pai nem sua mãe fizeram, que foi te educar.

      Excluir
  10. (Fodasi a matemática) nome ivan james do Brasil, Rio de janeiro, Saquarema.

    ResponderExcluir
  11. Realmente muito bom site! Vou fazer um trabalho e essas informações me ajudaram muito! 👏👏

    ResponderExcluir
  12. Gente socorro alguém me ajuda!!!
    A elevado à 2 + B elevado à 2
    A-B = 15
    AB= -25

    ResponderExcluir
  13. Muito bom, bem conceituado e råpido raciocínio!

    ResponderExcluir
  14. Muito bom, bem conceituado e råpido raciocínio!

    ResponderExcluir
  15. Como fasso essa

    a2+2ab+B2

    Para a=3 e b= -3

    ResponderExcluir
  16. Olá amanhã tenho teste sou 7º ano e tenho amanhã como tema expressão algébrica e simplificação de expressão entao por favo tem como vc conversar cmg por email para tirar mais duvidas minhas? soph231@outlook.com

    ResponderExcluir
  17. Alguém pode me ensinar fazer Asta conta de algébrica x-y (para x=5e y= -4)

    ResponderExcluir
  18. Manda no meu imeio salleinfo.luciene@gmail.com

    ResponderExcluir
  19. Eu queria uma ajuda sobre isso B2 4ac

    ResponderExcluir
  20. Gostaria d fazer algumas perguntas vc responde

    ResponderExcluir
  21. Otimo
    Me ajudou muito
    Tô muito grada pelo trqbalho de vcs
    Obrigado

    ResponderExcluir
  22. Otimo
    Me ajudou muito
    Tô muito grada pelo trqbalho de vcs
    Obrigado

    ResponderExcluir
  23. Foi muito otimo muito obrigado 😊😊😊😊😎

    ResponderExcluir
  24. Eu não entendi o porquê da D do segundo exercício de valor numérico deu:19
    (5A ao quadrado+3AB, para A=-3 e B=4)
    O certo não deveria ter dado 9 como resultado???.
    Por favor, me ajuda ;-;

    ResponderExcluir
  25. resolva expressão numerica : 0,45+(12-0,35)+47

    ResponderExcluir
  26. Calcule o valor numérico das expressões?
    A) x-y para x=-3 e y=7

    ResponderExcluir
  27. Determine o valor Númerico
    5xy²-x²y-6x x=-1 y=-2



    ResponderExcluir
  28. Eu vi isso daí hein professor kkkkkk

    ResponderExcluir