1- Naturais (IN)
N = {0,1,2,3,4,5...}
Convém destacar um subconjunto: N* = N - {0} = {1,2,3,4,5...}
É importante lembrar que sempre é possível efetuar a adição e a multiplicação, isto é, a soma e o produto de dois números naturais sempre terá como resultado um número natural, já a subtração entre dois números naturais nem sempre é um número natural, como por exemplo 2 ? 5, não pertence aos N, temos então o surgimento do conjunto dos números inteiros.
2- Inteiros (Z)
Z = {...-3,-2,-1,0,1,2,3...}
No conjunto dos inteiros destacamos os seguintes subconjuntos:
Z* = Z - {0} = {...-3,-2,-1,1,2,3...}
Z+ = {0,1,2,3,4...} (inteiros não negativos)
Z - = {0,-1,-2,-3,-4...} (inteiros não positivos)
Z*+ = {1,2,3,4...} (inteiros positivos)
Z*- = {-1,-2,-3,-4...} (inteiros não negativos)
Neste conjunto sempre é possível efetuar a adição, a multiplicação e a subtração entre números inteiros, isto é, sempre estas operações resultam em um número inteiro. Já a divisão nem sempre resulta em um número inteiro, como por exemplo, 7 : 2 ,não pertence aos inteiros surgindo assim o conjunto dos racionais.
3-Racionais (Q)
Q = {x tal que x = a/b (a sobre b) onde aÎ (pertence) Z a b E Z* (Z menos o zero)}.
O conjunto dos números racionais Q é a união do conjunto dos números naturais (N), inteiros (Z) e as frações positivas e negativas, como por exemplo:
Q = -5 ; - 4/3 ; - 1; 0; 0,25 ; 1/2 ; 3/4 ; 1; 6/5 ; 2
Obs: Um número racional pode aparecer em forma de dízima periódica, isto é, um numeral decimal, com a parte decimal formada por infinitos algarismos que se repetem periodicamente, como por exemplo: 4,5555 (período 5) , 10,878787 (período 87) e 9,8545454... (período 54, parte não periódica 8)
Exemplo: transformar em frações irredutíveis os números:
a) 0,1111....
x=0,111...
10x=1,111...
daí,
10x-x=1
x=1/9
portanto, 0,111...=1/9
b) 2,1343434...
x=2,1343434...
10x=21,3434...
1000x=2134,3434....
daí,
1000x-10x=2113
x=2113/990
portanto, 2,1343434...=2113/990
4-Irracionais (I) ? É todo número decimal não-exato e não periódico, bem como toda raiz não-exata.
- raiz quadrada de dois = 1,414...;
- raiz quadrada de três = 1,73...;
- dízimas não periódicas;
5-Reais (IR)
Nenhum comentário:
Postar um comentário