terça-feira, 25 de fevereiro de 2020

Logaritmos

Os logaritmos criados por John Napier e Jobst Burgi, e posteriormente adaptados por Henry Briggs, possuem a seguinte lei de formação:

logab = x, onde:

a = base do logaritmo
b = logaritmando
x = logaritmo

O logaritmo de um número b em uma base a é o expoente x que se deve aplicar à base a para se ter o número b. Dessa forma:

logab = xax = b

Exemplos:

log39 ↔ 32 = 9
log10100 ↔ 102 = 100
log216 ↔ 24 = 16
log981 ↔ 92 = 81

A partir dessa definição podemos apresentar algumas definições que auxiliarão no desenvolvimento de algumas situações envolvendo logaritmo. Veja:

O logaritmo do número 1 em qualquer base sempre será igual a 0.

loga1 = 0, pois a0 = 1

O logaritmo de qualquer número a na própria base a será igual a 1.

logaa = 1, pois a1 = a

O logaritmo de uma potência da base é o expoente, em qualquer base.

logaam = m, pois m * logaa = m * 1 = m

A potência de base a e expoente logab é igual a b.

alogab = b, pois logab = x → ax = b

Dois logaritmos são iguais, quando seus logaritmandos forem iguais.

logab = logac ↔ b = c



Exemplos

Aplicar a definição de logaritmo para calcular o valor de x em cada caso:

a) log327 = x → 3x = 27 → x = 3

b) log81x = 3/4 → x = 813/4 → x = (34)3/4 → x = 312/4 → x = 33x = 27

c) log4√2 = x → 4x = √2 → 22x = √2 → 22x = 21/2 → 2x = 1/2 → x = 1/4

d) logx8 = 2 → x2 = 8 → √x = √8 → x = 2√2

e) log4(2x – 1) = 1/2 → 2x – 1 = 41/2 → 2x – 1 = √4 → 2x – 1 = 2 → 2x = 3 → x = 3/2

f) log1818 = x → 18x = 18 → x = 1

g) logx1024 = 2 → x2 = 1024 → √x² = √1024 → x = 32

h) log40,25 = x → 4x = 0,25 → 4x = 25/100 → 4x = 1/4 → 4x = 4–1x = –1

i) 16log25 = (24)log25 = (2log25)4 = 54 = 625

j) log0,01 = x → 10x = 0,01 → 10x = 1/100 → 10x = 10–2x = –2Os logaritmos foram criados no intuito de facilitar os cálculos envolvendo números muito grandes ou muito pequenos. Os logaritmos reduzem esses números a algumas bases, a mais utilizada é a base decimal. As propriedades operatórias dos logaritmos possuem o objetivo de transformar multiplicações em somas, divisões em subtrações, potenciações em multiplicações e radiciações em divisões. Essas transformações facilitam os cálculos mais extensos.

Logaritmo de um produto

Considerando a, b e c números reais positivos e a ≠ 1, temos a seguinte propriedade:

loga(b*c) = logab + logac

Exemplo 1

Dados log2 = 0,301 e log3 = 0,477, determine o log12.

log12 → log12 = log(2 * 2 * 3) → log12 = log2 + log2 + log3 → log12 = 0,301 + 0,301 + 0,477 → log 12 = 1,079

Exemplo 2

Determine o valor de log2(8*32).

log2(8*32) = log28 + log232 = 3 + 5 = 8


Logaritmo de um quociente
Considerando a, b e c números reais positivos e a ≠ 1, temos a seguinte propriedade:

loga(b/c) = logab – logac
Exemplo 3

Sabendo que log30 = 1,477 e log5 = 0,699, determine log6.

log6 = (30/5) = log30 – log5 = 1,477 – 0,699 = 0,778

Exemplo 4

log3(6561/81) = log36561 – log381 = 8 – 4 = 5


Logaritmo de uma potência

Considerando a e b números reais positivos, com a ≠ 1, e m um número real, temos a seguinte propriedade:

logabm = m * logab

Exemplo 5

Sabendo que log 2 = 0,3010, calcule o valor de log 64.

log 64 = log 26 = 6 * log 2 = 6 * 0,3010 = 1,806


Exemplo 6

Dado log 2x = 2,4 e log 2 = 0,3, calcule x.

log 2x = 2,4 → x*log 2 = 2,4 → x * 0,3 = 2,4 → x = 2,4/0,3 → x = 8


Mudança de base

Para passarmos logab, com a e b positivos e a ≠ 1, para a base c, com c > 0 e c ≠ 1, utilizamos a seguinte expressão:

logab = logcb/ logca, com logca ≠ 0


Exemplo 7

Passando log49 para a base 2.

log49 = log29 / log24 = log29 / 2


Exemplo 8

Sabendo que log 4 = 0,60 e log 5 = 0,70, calcule log54.

log54 = log4 / log5 = 0,60 / 0,70 → log54 = 0,86
O sistema de logaritmos neperianos possui como base o número irracional e (e = 2,718...). Esse sistema também é conhecido como sistema de logaritmos naturais, com a condição x > 0. Ele pode ser expresso por:

logex = ln x

Transformando base e para a base decimal.

Considere o número real positivo x, para tal temos:

Através da relação demonstrada, podemos resolver os problemas propostos envolvendo a base decimal e a base e.

Exemplo 1
Sabendo que log 5 = 0,70, determine ln5.
Resolução:
ln x = 2,3 * log x → ln 5 = 2,3 * log 5 → ln 5 = 2,3 * 0,70 → ln 5 = 1,61


Exemplo 2
Sendo ln 0,02 = – 3,9, determine log 0,02.
Resolução:Se ln x = 2,3 * log x, então:



Exemplo 3
Dados log 2 = 0,30 e log e = 0,43, calcule o valor de x na equação ex – 8 = 0.
Resolução:


Exemplo 4
Calcular o valor de y na equação,

Resolução:




Exemplo 5
A corrente elétrica que atravessa um circuito é dada por i = 10 * e–0,02*t, em que i0 é o valor da corrente no instante t = 0 e i é o valor da corrente decorridos t segundos. Determine em quantos segundos a corrente atinge 2% do seu valor inicial. (dado: ln 0,02 = – 4)
Resolução:
A corrente elétrica leva 200 segundos para atingir 2% do seu valor inicial.
www.mundoeducacao.com.br

Um comentário: