Pular para o conteúdo principal

PRODUTOS NOTÁVEIS


Colégio Estadual Dinah Gonçalves
email accbarroso@hotmail.com        
     

Há certos produtos que ocorrem freqüentemente no calculo algébrico e que são chamados produtos notáveis. Vamos apresentar aqueles cujo emprego é mais freqüente.

QUADRADO DA SOMA DE DOIS TERMOS

Observe: (a + b)² = ( a + b) . (a + b)
_______________= a² + ab+ ab + b²
_______________= a² + 2ab + b²

Conclusão:
(primeiro termo)² + 2.(primeiro termo) . (segundo termo) + (segundo termo)²

Exemplos :

1) (5 + x)² = 5² + 2.5.x + x² = 25 + 10x + x²

2) (2x + 3y)² = (2x)² + 2.(2x).(3y) + (3y)² = 4x² + 12xy + 9y²

Exercícios

1) Calcule

a) (3 + x)² = ( R: 9 + 6x +x²)b) (x + 5)² = ( R: x² + 10x + 25)
c) ( x + y)² = ( R: x² + 2xy +y²)
d) (x + 2)² = ( R: x² + 4x + 4)
e) ( 3x + 2)² = ( R: 9x² + 12x +4)
f) (2x + 1)² = (R: 4x² + 4x + 1)
g) ( 5+ 3x)² = (R: 25 + 30x + 9x²)
h) (2x + y)² = (R: 4x² + 4xy + y²)
i) (r + 4s)² = (R: r² + 8rs + 16s²)j) ( 10x + y)² = (R: 100x² + 20xy + y²)l) (3y + 3x)² = (R: 9y² + 18xy + 9x²)m) (-5 + n)² = (R: 25 -10n + n²)
n) (-3x + 5)² = (R: 9x² - 30x + 25)
o) (a + ab)² = (R: a² + 2a²b + a²b²)
p) (2x + xy)² = (R: 4x² + 4x²y + x²y²)
q) (a² + 1)² = (R: (a²)² + 2a² + 1)r) (y³ + 3)² = [R: (y³)² + 6y³ + 9]s) (a² + b²)² = [R: (a²)² + 2a²b² + (b²)²]
t) ( x + 2y³)² = [R: x² + 4xy³ + 4(y³)²]
u) ( x + ½)² = (R: x² +x + 1/4)
v) ( 2x + ½)² = (R: 4x² + 2x + 1/4)x) ( x/2 +y/2)² = [R: x²/4 + 2xy/4 + y²/4]






QUADRADO DA DIFERENÇA DE DOIS TERMOS

Observe: (a - b)² = ( a - b) . (a - b)
______________= a² - ab- ab + b²
______________= a² - 2ab + b²

Conclusão:
(primeiro termo)² - 2.(primeiro termo) . (segundo termo) + (segundo termo)²

1) ( 3 – X)² = 3² + 2.3.X + X² = 9– 6x + x²

2) (2x -3y)² = (2x)² -2.(2x).(3y) + (3y)² = 4x² - 12xy+ 9y²


Exercícios

1) Calcule

a) ( 5 – x)² = (R: 25 – 10x + x²)b) (y – 3)² = (R: y² - 6y + 9)c) (x – y)² = (R: x² - 2xy + y²)
d) ( x – 7)² = (R: x² - 14x + 49)e) (2x – 5) ² = (R: 4x² - 20 x + 25)f) (6y – 4)² = (R: 36y² - 48y + 16)
g) (3x – 2y)² = (R: 9x² - 12xy + 4y²)h) (2x – b)² = (R: 4x² - 4xb + b²)
i) (5x² - 1)² = [R: 25(x²)² - 10x² + 1)
j) (x² - 1)² =
l) (9x² - 1)² =
m) (x³ - 2)² =
n) (2m⁵ - 3)² =
o) (x – 5y³)² =
p) (1 - mx)² =
q) (2 - x⁵)² =
r) (-3x – 5)² =
s) (x³ - m³)² =






PRODUTO DA SOMA PELA DIFERENÇA DE DOIS TERMOS(a + b). (a – b) = a² - ab + ab - b² = a²- b²

conclusão:
(primeiro termo)² - (segundo termo)²

Exemplos :

1) ( x + 5 ) . (x – 5) = x² - 5² = x² - 25
2) (3x + 7y) . (3x – 7y) = (3x)² - (7y)² = 9x² - 49y²


EXERCÍCIOS

1) Calcule o produto da soma pela diferença de dois termos:

a) (x + y) . ( x - y) = (R : x² - y²)b) (y – 7 ) . (y + 7) = ( R : x² - 49)
c) (x + 3) . (x – 3) = ( R: x² - 9)
d) (2x + 5 ) . (2x – 5) = ( R: 4x² - 25)
e) (3x – 2 ) . ( 3x + 2) = ( R: 9x² - 4 )
f) (5x + 4 ) . (5x – 4) = ( R: 25x² - 16)g) (3x + y ) (3x – y) = (R: 9x² - y² )h) ( 1 – 5x) . (1 + 5x) = ( R: 1 - 25x² )i) (2x + 3y) . (2x – 3y) = ( R: 4x² - 9y² )j) (7 – 6x) . ( 7 + 6x) = (R: 49 - 36x²)
l) (1 + 7x²) . ( 1 – 7x²) =
m) (3x² - 4 ) ( 3x² + 4) =
n) (3x² - y²) . ( 3x² + y²) =
o) (x + 1/2 ) . ( x – 1/2 ) =
p)(x – 2/3) . ( x + 2/3) =
q)( x/4 + 2/3) . ( x/4 – 2/3) =






CUBO DA SOMA OU DA DIFERENÇA DE DOIS TERMOS
.
Exemplo

a) (a + b)³ = (a + b) . (a + b)²
------------=(a + b) . (a² + 2ab + b²)
-------------= a³ + 2a²b + ab² + a²b + 2ab² + b³
-------------= a³ + 3a²b + 3ab² + b³

b) (a – b)³ = (a - b) . (a – b)²
-------------= ( a – b) . ( a² - 2ab + b²)
------------ = a³ - 2a²b + ab² - a²b + 2ab² - b³
------------ = a³ - 3a²b + 3ab² - b³

c) ( x + 5 )³ = x³ + 3x²5 + 3x5² + 5 ³
-------------- = x³ + 15x² + 75x +125

d) (2x – y )³ = (2x)³ - 3(2x)²y + 3(2x)y² - y³
--------------- = 8x³ - 3(4x²)y + 6xy² - y³
--------------- = 8x³ - 12x²y + 6xy² - y³


EXERCICIOS

1) Desenvolva

a) ( x + y)³ = (R: x³ + 3x²y + 3xy² + y³)
b) (x – y)³ = (R: x³ - 3x²y + 3xy² - y³)
c) (m + 3)³ = ( R: m³ + 9m² + 27m +27)
d) (a – 1 )³ = (R: a³ - 3a² + 3a -1)
e) ( 5 – x)³ = (R: 125 - 75x + 15x² -x³)f) (-a - b)³
g) (x + 2y)³
h) ( 2x – y )³
i) (1 + 2y)³
j) ( x – 2x)³
k) ( 1 – pq)³
l) (x – 1)³
m) ( x + 2 )³
n) ( 2x – 1)³
o) ( 2x + 5 )³
p) (3x – 2 )³
http://jmpmat3.blogspot.com/

Comentários

Postagens mais visitadas deste blog

EQUAÇÃO DE 1° GRAU

EQUAÇÃO DE 1° GRAU SENTENÇAS Uma sentença matemática pode ser verdadeira ou falsa exemplo de uma sentença verdadeira a) 15 + 10 = 25 b) 2 . 5 = 10 exemplo de uma sentença falsa a) 10 + 3 = 18 b) 3 . 7 = 20 SENTEÇAS ABERTAS E SENTENÇAS FECHADAS Sentenças abertas são aquelas que possuem elementos desconhecidos. Esses elementos desconhecidos são chamados variáveis ou incógnitas. exemplos a) x + 4 = 9 (a variável é x) b) x + y = 20 (as variáveis são x e y) Sentenças fechada ou são aquelas que não possuem variáveis ou incógnitas. a) 15 -5 = 10 (verdadeira) b) 8 + 1 = 12 (falsa) EQUAÇÕES Equações são sentenças matemáticas abertas que apresentam o sinal de igualdade exemplos a) x - 3 = 13 ( a variável ou incógnita x) b) 3y + 7 = 15 ( A variável ou incógnita é y) A expressão à esquerdas do sinal = chama-se 1º membro A expressão à direita do sinal do igual = chama-se 2º membro RESOLUÇÃO DE EQUAÇÕES DO 1º GRAU COM UMA VARIÁVEL O processo de res

VALOR NÚMERICO DE UMA EXPRESSÃO ALGÉBRICA

Para obter o valor numérico de uma expressão algébrica, você deve proceder do seguinte modo: 1º Substituir as letras por números reais dados. 2º Efetuar as operações indicadas, devendo obedecer à seguinte ordem: a) Potenciação b) Divisão e multiplicação c) Adição e subtração IMPORTANTE! Convém utilizar parênteses quando substituímos letras por números negativos Exemplo 1 Calcular o valor numérica de 2x + 3a para x = 5 e a = -4 2.x+ 3.a 2 . 5 + 3 . (-4) 10 + (-12) -2 Exemplo 2 Calcular o valor numérico de x² - 7x +y para x = 5 e y = -1 x² - 7x + y 5² - 7 . 5 + (-1) 25 – 35 -1 -10 – 1 -11 Exemplo 3 Calcular o valor numérico de : 2 a + m / a + m ( para a = -1 e m = 3) 2. (-1) + 3 / (-1) + 3 -2 + 3 / -1 +3 ½ Exemplo 4 Calcular o valor numérico de 7 + a – b (para a= 2/3 e b= -1/2 ) 7 + a – b 7 + 2/3 – (-1/2) 7 + 2/3 + 1 / 2 42/6 + 4/6 + 3/6 49/6 EXERCICIOS 1) Calcule o valor numérico das expressões: a) x – y (para x =5 e y = -4) (R:

OPERAÇÕES COM RADICAIS

RADICAIS SEMELHANTES Radicais semelhantes são os que têm o mesmo índice e o mesmo radicando Exemplos de radicais semelhantes a) 7√5 e -2√5 b) 5³√2 e 4³√2 Exemplos de radicais não semelhantes a) 5√6 e 2√3 b) 4³√7 e 5√7 ADIÇÃO E SUBTRAÇÃO 1º CASO : Os radicais não são semelhantes Devemos proceder do seguinte modo: a) Extrair as raízes (exatas ou aproximadas) b) Somar ou subtrair os resultados Exemplos 1) √16 + √9 = 4 + 3 = 7 2) √49 - √25 = 7 – 5 = 2 3) √2 + √3 = 1,41 + 1,73 = 3,14 Neste último exemplo, o resultado obtido é aproximado, pois √2 e √3 são números irracionais (representação decimal infinita e não periódica) EXERCÍCIOS 1) Calcule a) √9 + √4 = 5 b) √25 - √16 = 1 c) √49 + √16 = 11 d) √100 - √36 = 4 e) √4 - √1 = 1 f) √25 - ³√8 = 3 g) ³√27 + ⁴√16 = 5 h) ³√125 - ³√8 = 3 i) √25 - √4 + √16 = 7 j) √49 + √25 - ³√64 = 8 2º CASO : Os radicais são semelhantes. Para adicionar ou subtrair radicais semelhantes, procedemos como na redução de