O teorema de D'Alembert
Marcelo Rigonatto
Polinômios
Vejamos através de exemplos a praticidade desse teorema.
Exemplo 1. Determine qual será o resto da divisão do polinômio P(x) = x4 – 3x3 + 2x2 + x pelo binômio x – 2.
Solução: Pelo teorema do resto, sabemos que o resto da divisão de um polinômio P(x) por um binômio do tipo x – a será P(a).
Assim, temos que:
R = P(2)
R=24– 3∙23 + 2∙22 + 2
R = 16 – 24 + 8 + 2
R = 2
Portanto, o resto da divisão do polinômio P(x) pelo binômio x – 2 será 2.
Exemplo 2. Verifique se a divisão de P(x) = 3x3 – 2x2 – 5x – 1 por x – 5 é exata.
Solução: A divisão de P(x) por x – 5 será exata se o resto da divisão for igual a zero. Dessa forma, utilizaremos o teorema de D’Alembert para verificar se o que restou é ou não igual a zero.
Segue que:
R = P(5)
R=3∙53 –2∙52 –5∙5 – 1
R = 375 – 50 – 25 – 1
R = 299
Como o resto da divisão é diferente de zero, a divisão não é exata.
Exemplo 3. Calcule o resto da divisão de P(x) = x3 – x2 – 3x – 1 por x + 1.
Solução: Observe que o teorema se refere às divisões de polinômios por binômios do tipo x – a. Dessa forma, devemos nos atentar para o binômio do problema: x + 1. Ele pode ser escrito da seguinte maneira: x – (– 1). Assim, teremos:
R = P(– 1)
R= (-1)3 – (–1)2 – 3∙(–1) – 1
R = – 1 – 1 + 3 – 1
R = 0
O resto da divisão de P(x) por x + 1 é zero, logo, podemos afirmar que P(x) é divisível por x + 1.
Exemplo 4. Determine o valor de c para que P(x) = x5 – cx4 + 2x3 + x2 – x + 6 seja divisível por x – 2.
Solução: Pelo teorema de D’Alembert, o polinômio P(x) é divisível por x – 2 se R = P(2) = 0. Assim, temos que:
R = P(2) = 0
25 – c∙24 + 2∙23 + 22 –2 + 6 = 0
32 – 16c + 16 + 4 – 2 + 6 = 0
– 16c = – 56
c = 56 / 16
c = 7 / 2
Nenhum comentário:
Postar um comentário