www.youtube.com/accbarroso1
Consideremos uma multiplicação em que todos os fatores são iguais
Exemplo
5x5x5, indicada por 5³
ou seja , 5³= 5x5x5=125
onde :
5 é a base (fator que se repete)
3 é o expoente ( o número de vezes que repetimos a base)
125 é a potência ( resultado da operação)
Outros exemplos :
a) 7²= 7x7=49
b) 4³= 4x4x4=64
c) 5= 5x5x5x5=625
d) 2= 2x2x2x2x2=32
O expoente 2 é chamado de quadrado
O expoente 3 é chamado de cubo
O expoente 4 é chamado de quarta potência.
O expoente 5 é chamado de quinta potência.
Assim:
a) 7² Lê-se: sete elevado ao quadrado
b) 4³ Lê-se: quatro elevado ao cubo
c) 5 Lê-se: cinco elevado a quarta potência
d) 2 Lê-se: dois elevado a quinta potência
Por convenção temos que:
1) todo o número elevado ao expoente 1 é igual à própria base,
exemplo
a) 8¹ = 8
b) 5¹ = 5
c) 15¹ = 15
2) todo o número elevado ao expoente zero é igual a 1
exemplo
a) 8º=1
b) 4º=1
c) 12º=1
EXERCÍCIOS
1) Em 7² = 49, responda:
a) Qual é a base?
b) Qual é o expoente?
c) Qual é a potência?
2) Escreva na forma de potência:
a) 4x4x4=
b) 5x5
c) 9x9x9x9x9=
d) 7x7x7x7
e) 2x2x2x2x2x2x2=
f) cxcxcxcxc=
3) Calcule a potência:
a) 3² = (R: 9)
b) 8² = (R: 64)
c) 2³= (R: 8)d) 3³ = (R: 27)e) 6³ = (R: 216)
f) 2 = (R: 16)
g) 3 = (R: 81)
h) 3 = (R: 243)i) 1 = (R: 1)j) 0 = (R: 0)l) 1 = (R: 1)
m) 10² = (R: 100)
n) 10³ = (R: 1000)
o) 15² = (R: 225)
p) 17² = (R: 289)
q) 30² = (R: 900)
4) Calcule as potências:
a)40² =1600
b)32² =1024
c)15³ = 3375
d) 30³= 27000
e) 11 =14641
f) 300² = 90000
g) 100³ = 1000000
h) 101² = 10201
5) Calcule as Potências:
a) 11² = 121b) 20² = 400
c) 17² =289
d) 0² = 0e) 0¹ = 0
f) 1⁶ = 1
g) 10³ = 1.000
h) 470¹ = 470i) 11³ = 1331
j) 67⁰ =1k) 1³⁰ = 1l) 10⁵ = 100000m) 1⁵ = 1n) 15³ = 3375
o) 1² = 1
p) 1001⁰= 1
RADICIAÇÃO
Qual o número que elevado ao quadrado é igual a 9?
Solução
Sendo 3² = 9, podemos escrever que √9 = 3
Essa operação chama-se radiciação, que é a operação inversa da potenciação
Exemplos
Potenciação------------------------radiciação
a) 7² = 49 ---------------------------- √49= 7
b) 2³= 8 ------------------------------ ∛8 = 2
c) 3⁴= 81 ---------------------------- ∜81 = 3
O sinal √ chamamos de radical
O índice 2 significa : raiz quadrada
O índice 3 significa: raiz cúbica
O índice 4 significa: raiz quarta
assim:
√49= 7 lê-se: raiz quadrada de 49
∛8 = 2 lê-se : raiz cúbica de 8
∜81 = 3 lê-se: raiz quarta de 81
Nota:
Não é necessário o índice 2 no radical para a raiz quadrada
EXERCÍCIOS
1)Descubra o número que :
a) elevado ao quadrado dá 9
b) elevado ao quadrado dá 25
c) elevado ao quadrado dá 49
d) elevado ao cubo dá 8
2) Quanto vale x ?
a) x²= 9 (R:3)
b) x²= 25 (R:5)
c) x²= 49 (R:7)
d) x²= 81 (R:9)
3) Determine a Raiz quadrada:
a) √9 = 3b) √16 = 4
c) √25 = 5
d) √81 = 9
e) √0 = 0
f) √1 = 1
g) √64 = 8
h) √100 = 10
4) Resolva as expressões abaixo:
a) √16 + √36 = 4 + 6 = 10
b) √25 + √9 = 5 + 3 = 8
c) √49 - √4 = 7 - 2 = 5
d) √36- √1 = 6 - 1 = 5
e) √9 + √100 = 3 + 10 = 13
f) √4 x √9 = 2 x 3 = 6
PROPRIEDADES DA POTENCIAÇÃO
Primeira propriedade
Multiplicação de potências de mesma base
Ao multiplicar potências de mesma base, repetimos a base e somamos os expoentes.
exemplos
3² x 3⁵ = 3²⁺⁵ = 3⁷
conclusão:
conservamos a base e somamos os expoentes.
EXERCÍCIOS
1) Reduza a uma só potência
a) 4³ x 4 ²= 4⁵
b) 7⁴ x 7⁵ = 7⁹
c) 2⁶ x 2²= 2⁸
d) 6³ x 6 = 6⁴
e) 3⁷ x 3² = 3⁹
f) 9³ x 9 = 9⁴
g) 5 x 5² = 5³
h) 7 x 7⁴ = 7⁵
i) 6 x 6 = 6²
j) 3 x 3 = 3²
l) 9² x 9⁴x 9 = 9⁷
m) 4 x 4² x 4 = 4⁴
n) 4 x 4 x 4= 4³
0) m⁰ x m x m³ = m⁴
p) 15 x 15³ x 15⁴x 15 = 15⁹
2) Reduza a uma só potência:
a) 7² x 7⁶ = 7⁸
b) 2² x 2⁴= 2⁶
c) 5 x 5³ = 5⁴
d) 8² x 8 = 8³
e) 3⁰ x 3⁰ = 3⁰
f) 4³ x 4 x 4² = 4⁶
g) a² x a² x a² = a⁶
h) m x m x m² = m⁴
i) x⁸ . x . x = x¹⁰
j) m . m . m = m³
Segunda Propriedade
Divisão de Potência de mesma base
Ao dividir potências de mesma base, repetimos a base e subtraímos os expoentes.
Exemplo
a) 8⁹: 8² = 8⁹⁻² = 8⁷
b) 5⁴ : 5 = 5⁴⁻¹ = 5³
conclusão : conservamos a base e subtraimos os expoentes
EXERCÍCIOS
1) Reduza a uma só potência
a) 5⁴ : 5² = 5²
b) 8⁷ : 8³ = 8⁴
c) 9⁵ : 9² = 9³
d) 4³ : 4² = 4¹e) 9⁶ : 9³ = 9³
f) 9⁵ : 9 = 9⁴
g) 5⁴ : 5³ = 5¹
h) 6⁶ : 6 = 6⁷
i) a⁵ : a³ = a²
j) m² : m = m¹
k) x⁸ : x = x⁷
l) a⁷ : a⁶ = a¹
2) Reduza a uma só potência:
a) 2⁵ : 2³ =
b) 7⁸ : 7³=
c) 9⁴ : 9 =
d) 5⁹ : 5³ =
e) 8⁴ : 8⁰ =
f) 7⁰ : 7⁰ =
Teceira Propriedade
Potência de Potência
Ao elevar uma potência a um outro expoente, repetimos a base e multiplicamos os expoentes.
(7²)³ = 7²΄³ = 7⁶
conclusão: conservamos a base e multiplicamos os expoentes.
EXERCÍCIOS
1) Reduza a uma só potência:
a) (5⁴)²
b) (7²)⁴
c) (3²)⁵
d) (4³)²
e) (9⁴)⁴
f) (5²)⁷
g) (6³)⁵
h) (a²)³
i) (m³)⁴
j) (m³)⁴
k) (x⁵)²
l) (a³)⁰
m) (x⁵)⁰
2) Reduza a uma só potência:
a) (7²)³ =
b) (4⁴)⁵ =
c) (8³)⁵ =
d) (2⁷)³ =
e) (a²)³ =
f) (m³)⁴ =
g) (a⁴)⁴ =
h) (m²)⁷ =
EXPRESSÕES NUMÉRICAS COM POTENCIAÇÃO
Para resolver uma expressão numérica, efetuamos as operações obedecendo à seguinte ordem :
1°) Potenciação
2°) Multiplicações e divisões
3°) Adições e Subtrações
EXEMPLOS
1) 5 + 3² x 2 =
= 5 + 9 x 2 =
= 5 + 18 =
= 23
2) 7² - 4 x 2 + 3 =
= 49 – 8 + 3 =
= 41 + 3 =
= 44
Há expressões onde aparecem os sinais de associação e que devem ser eliminados nesta ordem:
1°) parênteses ( )
2°) colchetes [ ]
3°) chaves { }
exemplos
1°) 40 – [5² + ( 2³ - 7 )] =
= 40 – [5² + ( 8 - 7 )]
= 40 – [25 + 1 ]=
= 40 – 26 =
= 14
2°) 50 –{ 15 + [ 4² : ( 10 – 2 ) + 5 x 2 ] } =
= 50 –{ 15 + [ 16 : 8 + 10 ]}=
= 50 – { 15 + [ 2 + 10 ] } =
= 50 – { 15 +12 } =
= 50 – 27 =
= 23
Exercícios
1) Calcule o valor das expressões:
a) 7² - 4 = (R:45)
b) 2³ + 10 = (R:18)
c) 5² - 6 = (R:19)
d) 4² + 7⁰= (R:17)e) 5⁰+ 5³= (R: 126)
f) 2³+ 2⁴ = (R: 24)
g) 10³ - 10² = (R: 900)
h) 80¹ + 1⁸⁰ = (R: 81)
i) 5² - 3² = (R: 16)
j) 1⁸⁰ + 0⁷⁰ = (R: 1)
2) Calcule
a) 3² + 5 = (R: 14)b) 3 + 5² = (R: 28)
c) 3² + 5² = (R: 34)
d) 5² - 3² = (R: 16)
e) 18 - 7⁰ = (R: 17)f) 5³ - 2² = (R: 121)
g) 10 + 10² = (R: 110)
h) 10³ - 10² = (R: 900)
i) 10³ - 1¹ = (R: 999)
3) Calcule o valor das expressões
a) 2³ x 5 + 3² = (R: 49)
b) 70⁰+ 0⁷⁰ - 1 = (R: 0 )
c) 3 x 7¹ - 4 x 5⁰ = (R: 17)
d) 3⁴- 2⁴: 8 – 3 x 4 = (R: 67)
e) 5² + 3 x 2 – 4 = (R: 27)
f) 5 x 2² + 3 – 8 = (R: 15)
g) 5² - 3 x 2² - 1 = (R: 12)
h) 16 : 2 – 1 + 7² = (R: 56)
4) calcule o valor das expressões:
a) 5² : ( 5 +1 -1)+ 4 x 2 = (R: 13)
b) (3 +1)² +2 x 5 - 10⁰ = (R: 25)
c) c) 3²: ( 4 – 1) + 3 x 2² = (R: 15)
d) 70 –[ 5 x (2² : 4) + 3²] = (R: 56)
e) ( 7 + 4) x ( 3² - 2³) = (R: 11)
f) 5² + 2³ - 2 x (3 + 9) = (R: 9)
g) 6² : 3² + 4 x 10 – 12 = (R: 32)
h) (7² - 1 ) : 3 + 2 x 5 = (R: 26)
5) calcule o valor das expressões:
a) 5 + 4²- 1 = (R: 20)
b) 3⁴ - 6 + 2³ = (R: 83)
c) 2⁵ - 3² + 1⁹ = (R: 24)
d) 10²- 3² + 5 = (R: 96)e) 11² - 3² + 5 = (R: 117)
f) 5 x 3² x 4 = (R: 180)
g) 5 x 2³ + 4² = (R: 56)
h) 5³ x 2² - 12 = (R: 488)
6) Calcule o valor das expressões:
a) ( 4 + 3)² - 1 = (R: 48)
b) ( 5 + 1 )² + 10 = (R: 46)
c) ( 9 – 7 )³ x 8 = (R: 64)
d) ( 7² - 5²) + ( 5² - 3 ) = (R: 46)e) 6² : 2 - 1⁴ x 5 = (R: 13)
f) 3² x 2³ + 2² x 5² = (R: 172)
7) Calcule o valor das expressões:
a) 4²- 10 + (2³ - 5) = (R: 9)b) 30 – (2 + 1)²+ 2³ = (R: 29)
c) 30 + [6² : ( 5 – 3) + 1 ] = (R: 49)
d) 20 – [6 – 4 x( 10 - 3²) + 1] = (R: 17)
e) 50 + [ 3³ : ( 1 + 2) + 4 x 3] = (R: 71)f) 100 –[ 5² : (10 – 5 ) + 2⁴ x 1 ] = (R: 79)
g) [ 4² + ( 5 – 3)³] : ( 9 – 7)³ = (R: 3 )h) 7²+ 2 x[(3 + 1)² - 4 x 1³] = (R: 73)
i) 25 + { 3³ : 9 +[ 3² x 5 – 3 x (2³- 5¹)]} = (R: 64)
8) Calcule as expressões:
a) ( 8 : 2) . 4 + {[(3² - 2³) . 2⁴ - 5⁰] . 4¹}= (R:76)
b) ( 3² - 2³) . 3³ - 2³ + 2² . 4² = ( R:83)
c) ( 2⁵ - 3³) . (2² - 2 ) = (R: 10)
d) [2 . (10 - 4² : 2) + 6²] : ( 2³ - 2²) = ( R:10)
e) (18 – 4 . 2) . 3 + 2⁴ . 3 - 3² . ( 5 – 2) = (R: 51)
f) 4² . [2⁴ : ( 10 – 2 + 8 ) ] + 2⁰ = (R: 17)
g) [( 4² + 2 . 3²) + ( 16 : 8)² - 35]² + 1¹⁰ - 10⁰ = (R : 9)
h) 13 + ( 10 – 8 + (7 – 4)) = (R: 18)
i) (10 . 4 + 18 – ( 2 . 3 +6)) = (R:46)
j) 7 . ( 74 – ( 4 + 7 . 10)) = (R: 0)
k) ( 19 : ( 5 + 3 . 8 – 10)) = (R : 1)
l) (( 2³ + 2⁴) . 3 -4) + 3² = (R: 77)
m) 3 + 2 . ((3²- 2⁰) + ( 5¹ - 2²)) + 1 = (R: 22)
Olá! Achei que faltou conteúdo, pois não resolvi minha dúvida. Como por exemplo, em um dos calculos, está dizendo que 8² : 8³ = 8 pois subtrai os expoentes, mas e quando a base é diferente!? o que fazer? Ex: 5³ : 7² ............ Outra dúvida... O que fazer quando me deparo com: 2² + 2³ por exemplo? Tem alguma forma de simplificar, ao invez de resolver um por um para depois somar?
ResponderExcluirGrato.
5*5*5=125,7*7=49=129/49,no seu outro exemplo basta multiplicar os expoentes 2*3=que dá 6 ,não entendi sua pergunta qualquer dúvida procure as regras de potenciação e radiciação ,elas ajudam muito....boa noite!
ExcluirAcima tá errado ... O correto e:
Excluir5*5*5=125 e 7*7=49, logo 125÷49=2,55
No outro problema:
2*2=4 e 2*2*2=8 , logo 4+8=12
Acima tá errado ... O correto e:
Excluir5*5*5=125 e 7*7=49, logo 125÷49=2,55
No outro problema:
2*2=4 e 2*2*2=8 , logo 4+8=12
quando a base é diferente, é por que é base é diferente... quando a divisão, o expoente pode ficar negativo... é óbvio e claro que faltou conteúdo, quiser mais pesquisa na internet o cara já fez demais em simplificar tanto conteúdo para de ser vadio e procura em outro lugar...
ExcluirEste comentário foi removido pelo autor.
ResponderExcluirajudou muito obrigado.=)
ResponderExcluirShjssjshjsjsjsjsjekdkrkrlrorprprprpfl
ResponderExcluirAJUDOU MUITO OBRIGADO
ResponderExcluirObrigada👍
ResponderExcluirE pra copiar tudo no caderno?
ResponderExcluirkkkkkkkkkkk
Excluirnao, imprime e cola no seu caderno folgado...k k k k k k
ExcluirAjudou muito,obrigada
ResponderExcluirme ajudou muito! obrigada pelo conteúdo de qualidade que você fornece, além disso, de maneira gratuita. só gratidão!!!
ResponderExcluirfico eu aqui pensando no trabalho que deu resumir os principais conteudos numa publicação só... e ainda tem folgado reclamando... bater com um gato morto até o gato miar... haja paciencia...
ResponderExcluirSuas explicações estão ótimas!!! Muito obrigada!!!!
ResponderExcluir