Pular para o conteúdo principal

Sequência de Fibonacci

Sequência é todo conjunto ou grupo no qual seus elementos estão escritos em uma determinada ordem.
Exemplos:
a) (0, 2, 4, 6, 8, 10,...) é a sequência dos números pares.
b) (1, 3, 5, 7, 9, 11,...) é a sequência dos números ímpares.
c) (0, 5, 10, 15, 20, 25,...) é a sequência dos múltiplos de 5.

As sequências são classificadas em: finita ou infinita. Em uma sequência numérica, o primeiro termo é representado por a1, o segundo termo por a2, o terceiro termo por a3, e assim sucessivamente. Em uma sequência numérica finita o último termo é representado por an. A letra n indica a quantidade de termos da sequência ou a posição de cada termo.

Muitas sequências são “geradas” de observações do cotidiano. Uma dessas sequências, muito famosa, presente em vários filmes de ficção como O Código Da Vinci (Buena Vista, 2006), é a sequência de Fibonacci.

Fibonacci ou Leonardo de Pisa (1170-1250), um famoso matemático italiano, criou a sequência que leva seu nome a partir da observação do crescimento de uma população de coelhos. Os números descrevem a quantidade de casais em uma população de coelhos após n meses, partindo dos seguintes pressupostos:

1. No primeiro mês nasce somente um casal;
2. Casais amadurecem sexualmente após o segundo mês de vida;
3. Não há problemas genéticos no cruzamento consanguíneo;
4. Todos os meses, cada casal dá à luz a um novo casal;
5. Os coelhos nunca morrem;

Com essas condições, inicia-se a construção da sequência:

No 1º mês há apenas 1 casal de coelhos. Como a maturidade sexual dos coelhos dá-se somente a partir do segundo mês de vida, no mês seguinte continua havendo apenas 1 casal. No 3º mês teremos o nascimento de mais um casal, totalizando 2 casais. No 4º mês, com o nascimento de mais um casal, gerado pelo casal inicial, (visto que o segundo ainda não amadureceu sexualmente ) teremos 3 casais. No mês seguinte (5º), com nascimento de dois novos casais gerados pelo casal 1 e pelo casal 2, totalizam-se 5 casais.
Seguindo essa lógica e as condições estabelecidas previamente por Fibonacci temos a sequência:
1, 1, 2, 3, 5, 8, 13, 21, 34, 55,...
Ela representa a quantidade de casais de coelhos mês a mês. Observando com mais cuidado, pode-se perceber que qualquer termo posterior dessa sequência é obtido adicionando os dois termos anteriores. Vejamos:

O 6º termo da sequência é 8. Somando os dois termos anteriores 5+3 =8.

Assim, 89 é o termo que virá após 55, pois 34+55=89.

Dessa forma, para determinar o próximo basta fazer 89 + 55 = 144, e assim por diante.
Por Marcelo Rigonatto
Especialista em Estatística e Modelagem Matemática.

Comentários

Postagens mais visitadas deste blog

EQUAÇÃO DE 1° GRAU

EQUAÇÃO DE 1° GRAU SENTENÇAS Uma sentença matemática pode ser verdadeira ou falsa exemplo de uma sentença verdadeira a) 15 + 10 = 25 b) 2 . 5 = 10 exemplo de uma sentença falsa a) 10 + 3 = 18 b) 3 . 7 = 20 SENTEÇAS ABERTAS E SENTENÇAS FECHADAS Sentenças abertas são aquelas que possuem elementos desconhecidos. Esses elementos desconhecidos são chamados variáveis ou incógnitas. exemplos a) x + 4 = 9 (a variável é x) b) x + y = 20 (as variáveis são x e y) Sentenças fechada ou são aquelas que não possuem variáveis ou incógnitas. a) 15 -5 = 10 (verdadeira) b) 8 + 1 = 12 (falsa) EQUAÇÕES Equações são sentenças matemáticas abertas que apresentam o sinal de igualdade exemplos a) x - 3 = 13 ( a variável ou incógnita x) b) 3y + 7 = 15 ( A variável ou incógnita é y) A expressão à esquerdas do sinal = chama-se 1º membro A expressão à direita do sinal do igual = chama-se 2º membro RESOLUÇÃO DE EQUAÇÕES DO 1º GRAU COM UMA VARIÁVEL O processo de res

VALOR NÚMERICO DE UMA EXPRESSÃO ALGÉBRICA

Para obter o valor numérico de uma expressão algébrica, você deve proceder do seguinte modo: 1º Substituir as letras por números reais dados. 2º Efetuar as operações indicadas, devendo obedecer à seguinte ordem: a) Potenciação b) Divisão e multiplicação c) Adição e subtração IMPORTANTE! Convém utilizar parênteses quando substituímos letras por números negativos Exemplo 1 Calcular o valor numérica de 2x + 3a para x = 5 e a = -4 2.x+ 3.a 2 . 5 + 3 . (-4) 10 + (-12) -2 Exemplo 2 Calcular o valor numérico de x² - 7x +y para x = 5 e y = -1 x² - 7x + y 5² - 7 . 5 + (-1) 25 – 35 -1 -10 – 1 -11 Exemplo 3 Calcular o valor numérico de : 2 a + m / a + m ( para a = -1 e m = 3) 2. (-1) + 3 / (-1) + 3 -2 + 3 / -1 +3 ½ Exemplo 4 Calcular o valor numérico de 7 + a – b (para a= 2/3 e b= -1/2 ) 7 + a – b 7 + 2/3 – (-1/2) 7 + 2/3 + 1 / 2 42/6 + 4/6 + 3/6 49/6 EXERCICIOS 1) Calcule o valor numérico das expressões: a) x – y (para x =5 e y = -4) (R:

OPERAÇÕES COM RADICAIS

RADICAIS SEMELHANTES Radicais semelhantes são os que têm o mesmo índice e o mesmo radicando Exemplos de radicais semelhantes a) 7√5 e -2√5 b) 5³√2 e 4³√2 Exemplos de radicais não semelhantes a) 5√6 e 2√3 b) 4³√7 e 5√7 ADIÇÃO E SUBTRAÇÃO 1º CASO : Os radicais não são semelhantes Devemos proceder do seguinte modo: a) Extrair as raízes (exatas ou aproximadas) b) Somar ou subtrair os resultados Exemplos 1) √16 + √9 = 4 + 3 = 7 2) √49 - √25 = 7 – 5 = 2 3) √2 + √3 = 1,41 + 1,73 = 3,14 Neste último exemplo, o resultado obtido é aproximado, pois √2 e √3 são números irracionais (representação decimal infinita e não periódica) EXERCÍCIOS 1) Calcule a) √9 + √4 = 5 b) √25 - √16 = 1 c) √49 + √16 = 11 d) √100 - √36 = 4 e) √4 - √1 = 1 f) √25 - ³√8 = 3 g) ³√27 + ⁴√16 = 5 h) ³√125 - ³√8 = 3 i) √25 - √4 + √16 = 7 j) √49 + √25 - ³√64 = 8 2º CASO : Os radicais são semelhantes. Para adicionar ou subtrair radicais semelhantes, procedemos como na redução de