Seja C um conjunto com m elementos distintos. No estudo de arranjos, já vimos antes que é possível escolher p elementos de A, mas quando realizamos tais escolhas pode acontecer que duas coleções com p elementos tenham os mesmos elementos em ordens trocadas. Uma situação típica é a escolha de um casal (H,M).
Quando se fala casal, não tem importância a ordem da posição (H,M) ou (M,H), assim não há a necessidade de escolher duas vezes as mesmas pessoas para formar o referido casal. Para evitar a repetição de elementos em grupos com a mesma quantidade p de elementos, introduziremos o conceito de combinação.
Diremos que uma coleção de p elementos de um conjunto C com m elementos é uma combinação de m elementos tomados p a p, se as coleções com p elementos não tem os mesmos elementos que já apareceram em outras coleções com o mesmo número p de elementos.
Aqui temos outra situação particular de arranjo, mas não pode acontecer a repetição do mesmo grupo de elementos em uma ordem diferente.
Isto significa que dentre todos os A(m,p) arranjos com p elementos, existem p! desses arranjos com os mesmos elementos, assim, para obter a combinação de m elementos tomados p a p, deveremos dividir o número A(m,p) por m! para obter apenas o número de arranjos que contem conjuntos distintos, ou seja:
C(m,p) = A(m,p) / p!
Como A(m,p) = m.(m-1).(m-2). ... .(m-p+1), então:
C(m,p) = [ m.(m-1).(m-2). ... .(m-p+1)] / p!
o que pode ser reescrito
C(m,p) = [ m.(m-1).(m-2). ... .(m-p+1)] / [(1.2.3.4....(p-1)p]
Se multiplicarmos numerador e denominador desta fração por
(m-p)(m-p-1)(m-p-2)...3.2.1
que é o mesmo que multiplicar por (m-p)!, o numerador da fração ficará:
m.(m-1).(m-2).....(m-p+1)(m-p)(m-p-1)...3.2.1 = m!
e o denominador ficará:
p! (m-p)!
Assim, a expressão simplificada para a combinação de n elementos tomados p a p, será:
m!
C(m,p) =
---------------------------------------------------------
p! (m-p)!
Nenhum comentário:
Postar um comentário