Pular para o conteúdo principal

Regra do octeto Átomo nobre tem oito eletrons na camada de valência

Os gases nobres, hélio, neônio, argônio, criptônio, xenônio e radônio, se destacam entre todos os elementos químicos por apresentarem uma estabilidade única, que os torna inertes à reação com quase todos os outros elementos.

Normalmente tais gases se apresentam como átomos isolados e não como moléculas, estabelecendo ligações atômicas apenas em condições muito especiais.

É claro que características tão particulares chamaram a atenção dos químicos, que se propuseram a entender o que estes átomos possuíam de diferente dos outros para apresentar tal comportamento.

A resposta veio da análise do modo como os elétrons se distribuíam ao longo das camadas destes átomos, conforme descrito na tabela que segue:

Distribuição Eletrônica dos Gases Nobres
Gás Nobre

Noatômico

Distribuição dos eletrons por camadas
1a

2a

3a

4a

5a

6a
He

2

2

Ne

10

2

8

Ar

18

2

8

8

Kr

36

2

8

18

8

Xe

54

2

8

18

18

8

Ra

86

2

8

18

32

18

8

Com exceção do hélio, todos os gases nobres possuem oito elétrons em sua camada de valência, aquela última na qual ocorrem as ligações moleculares ou iônicas.

Assim, um átomo que completa a última camada de sua eletrosfera com oito elétrons adquire as características de um gás nobre, ou seja, torna-se estável.

Um exemplo próximo de todos é a molécula de água.

Vejamos a distribuição eletrônica do oxigênio:

Número atômico

1acamada

2acamada
8

2

6

Para obedecer à regra do octeto, o oxigênio precisa para se estabilizar de mais dois átomos na última camada.

Assim temos o porquê de nossa conhecida fórmula H2O, já que na molécula de água cada um dos átomos de hidrogênio compartilha numa ligação covalente um elétron com o átomo de oxigênio, que assim passa a somar em sua última camada os oitos que precisava para sua estabilidade, conforme figura seguinte:


Pela mesma razão, a molécula de oxigênio O2 é formada pelo compartilhamento de dois pares eletrônicos por cada átomo da ligação, conforme se vê abaixo:


Notem na figura que pela ligação molecular, os dois átomos de oxigênio compartilham quatro elétrons (dupla ligação), constituindo assim, oito elétrons em sua última camada. Já a molécula do nitrogênio, N2, cujos átomos têm número atômico 7 e distribuição eletrônica 2-5, precisa, para cumprir a regra do octeto, de mais três elétrons na última camada.

Isto é obtido através de uma tripla ligação, na qual cada átomo compartilha três elétrons com o outro membro da ligação, conforme figura abaixo:

Moléculas de Nitrogênio, com tripla ligação e molécula de Hidrogênio. O H2 não obedece a Regra do Octeto

Na figura, além da molécula de nitrogênio, podemos observar a molécula de hidrogênio, que, obviamente, não obedece à regra do octeto.

Isto se dá pelo fato de estarmos falando de uma regra e não de uma lei da química.

Assim, não só o hidrogênio, que encontra a estabilidade numa distribuição eletrônica semelhante à do helio, mas também outros elementos químicos não necessariamente seguem o padrão de formar ligações que complementem suas camadas finais com oito elétrons.

Isto pode ser concluído de uma simples observação da tabela periódica.

Os elementos situados nos grupos 3 a 12 da tabela, também chamados de elementos de transição, têm distribuições eletrônicas que dificultam o cumprimento da regra do octeto, pois teriam que trocar ou compartilhar um número relativamente grande de elétrons para adequarem-se àquela Regra.

A regra do octeto é cumprida de modo geral nos grupos 1 e 2 e do 13 ao 18, onde se situam os elementos químicos que podem completar os elétrons da última camada com ligações atômicas envolvendo poucos elétrons.
Carlos Roberto de Lana é engenheiro químico e professor.

Comentários

Postagens mais visitadas deste blog

EQUAÇÃO DE 1° GRAU

EQUAÇÃO DE 1° GRAU SENTENÇAS Uma sentença matemática pode ser verdadeira ou falsa exemplo de uma sentença verdadeira a) 15 + 10 = 25 b) 2 . 5 = 10 exemplo de uma sentença falsa a) 10 + 3 = 18 b) 3 . 7 = 20 SENTEÇAS ABERTAS E SENTENÇAS FECHADAS Sentenças abertas são aquelas que possuem elementos desconhecidos. Esses elementos desconhecidos são chamados variáveis ou incógnitas. exemplos a) x + 4 = 9 (a variável é x) b) x + y = 20 (as variáveis são x e y) Sentenças fechada ou são aquelas que não possuem variáveis ou incógnitas. a) 15 -5 = 10 (verdadeira) b) 8 + 1 = 12 (falsa) EQUAÇÕES Equações são sentenças matemáticas abertas que apresentam o sinal de igualdade exemplos a) x - 3 = 13 ( a variável ou incógnita x) b) 3y + 7 = 15 ( A variável ou incógnita é y) A expressão à esquerdas do sinal = chama-se 1º membro A expressão à direita do sinal do igual = chama-se 2º membro RESOLUÇÃO DE EQUAÇÕES DO 1º GRAU COM UMA VARIÁVEL O processo de res

VALOR NÚMERICO DE UMA EXPRESSÃO ALGÉBRICA

Para obter o valor numérico de uma expressão algébrica, você deve proceder do seguinte modo: 1º Substituir as letras por números reais dados. 2º Efetuar as operações indicadas, devendo obedecer à seguinte ordem: a) Potenciação b) Divisão e multiplicação c) Adição e subtração IMPORTANTE! Convém utilizar parênteses quando substituímos letras por números negativos Exemplo 1 Calcular o valor numérica de 2x + 3a para x = 5 e a = -4 2.x+ 3.a 2 . 5 + 3 . (-4) 10 + (-12) -2 Exemplo 2 Calcular o valor numérico de x² - 7x +y para x = 5 e y = -1 x² - 7x + y 5² - 7 . 5 + (-1) 25 – 35 -1 -10 – 1 -11 Exemplo 3 Calcular o valor numérico de : 2 a + m / a + m ( para a = -1 e m = 3) 2. (-1) + 3 / (-1) + 3 -2 + 3 / -1 +3 ½ Exemplo 4 Calcular o valor numérico de 7 + a – b (para a= 2/3 e b= -1/2 ) 7 + a – b 7 + 2/3 – (-1/2) 7 + 2/3 + 1 / 2 42/6 + 4/6 + 3/6 49/6 EXERCICIOS 1) Calcule o valor numérico das expressões: a) x – y (para x =5 e y = -4) (R:

OPERAÇÕES COM RADICAIS

RADICAIS SEMELHANTES Radicais semelhantes são os que têm o mesmo índice e o mesmo radicando Exemplos de radicais semelhantes a) 7√5 e -2√5 b) 5³√2 e 4³√2 Exemplos de radicais não semelhantes a) 5√6 e 2√3 b) 4³√7 e 5√7 ADIÇÃO E SUBTRAÇÃO 1º CASO : Os radicais não são semelhantes Devemos proceder do seguinte modo: a) Extrair as raízes (exatas ou aproximadas) b) Somar ou subtrair os resultados Exemplos 1) √16 + √9 = 4 + 3 = 7 2) √49 - √25 = 7 – 5 = 2 3) √2 + √3 = 1,41 + 1,73 = 3,14 Neste último exemplo, o resultado obtido é aproximado, pois √2 e √3 são números irracionais (representação decimal infinita e não periódica) EXERCÍCIOS 1) Calcule a) √9 + √4 = 5 b) √25 - √16 = 1 c) √49 + √16 = 11 d) √100 - √36 = 4 e) √4 - √1 = 1 f) √25 - ³√8 = 3 g) ³√27 + ⁴√16 = 5 h) ³√125 - ³√8 = 3 i) √25 - √4 + √16 = 7 j) √49 + √25 - ³√64 = 8 2º CASO : Os radicais são semelhantes. Para adicionar ou subtrair radicais semelhantes, procedemos como na redução de