Pular para o conteúdo principal

Solubilidade de compostos orgânicos

A solubilidade de uma substância é uma propriedade física muito importante, na qual se baseiam certos métodos de separação de misturas, de extração de produtos naturais e de recristalização de substâncias.

Também é uma propriedade muito empregada nas industrias de tintas, perfumes, sabões e detergentes, açúcares e plásticos. A solubilidade depende da natureza do soluto, do solvente e da temperatura.

Para prever o comportamento de certos solutos em relação a certos solventes (à temperatura constante) é necessário se analisar as suas estruturas moleculares, ou melhor, o tipo de interação que há entre soluto e solvente.

De acordo com as Regras de Solubilidade, uma substância polar tende a dissolver em um solvente polar, e uma substância apolar também num solvente apolar. Ou seja, semelhante dissolve semelhante. Por esse motivo as substâncias orgânicas em geral, só se dissolvem em líquidos também orgânicos, como, por exemplo, álcool, éter, benzeno, gasolina, etc. Esses líquidos recebem o nome de solventes orgânicos.

Outra consideração que devemos fazer é a seguinte: quando a temperatura de uma solução diminui ou quando o solvente evapora, o soluto tende a cristalizar, purificando-se, mas, devemos notar que:

* A cristalização de uma substância iônica é mais fácil, pois, os íons se atraem eletricamente;

* Pelo contrário a cristalização de uma substância molecular é mais difícil, pois a atração entre as moléculas é muito menor. A cristalização das substâncias orgânicas é em geral difícil e demorada. Existem certos compostos orgânicos como a parafina, que não se cristalizam. Os compostos orgânicos cristalinos surgem entre os compostos orgânicos bastante polares (caso dos açucares) ou entre os compostos orgânicos iônicos (como exemplo, os sais orgânicos).

Após muitos anos de estudos, chegou-se a conclusão que é conveniente distribuir os compostos orgânicos em sete grupos de solubilidade, com base em:

1. Sua solubilidade em relação à água, éter, solução aquosa de hidróxido de sódio a 5%, ácido clorídrico a 5%, ácido concentrado frio.

2. Nos elementos que eles contém além do carbono e hidrogênio.

Os grupos resultantes desta classificação são:

* Grupo I: Compostos solúveis tanto em éter quanto em água.

* Grupo II: Compostos solúveis em água, mas insolúveis em éter.

* Grupo III: Compostos insolúveis em água, mas solúveis em hidróxido de sódio diluído. Este grupo ainda foi dividido em:
Grupo III-A: compostos solúveis em hidróxido de sódio diluído e solúveis em bicarbonato de sódio diluído.
Grupo III-B: compostos solúveis em hidróxido de sódio diluído e insolúveis em bicarbonato de sódio, diluído.

* Grupo IV: Compostos insolúveis em água, mas solúveis em ácido clorídrico diluído.

* Grupo V: Hidrocarbonetos e compostos contendo C, H e O que não sejam aqueles dos Grupos I a IV e sejam solúveis em ácido sulfúrico concentrado ("compostos indiferentes").

* Grupo VI: Todos os compostos que não contenham N ou S e que sejam insolúveis em ácido sulfúrico concentrado.

* Grupo VII: Compostos que contenham N ou S que não sejam aqueles dos Grupos I a IV. Muitos dos compostos deste grupo são solúveis em ácido sulfúrico concentrado.
www.coladaweb.com/

Comentários

Postagens mais visitadas deste blog

EQUAÇÃO DE 1° GRAU

EQUAÇÃO DE 1° GRAU SENTENÇAS Uma sentença matemática pode ser verdadeira ou falsa exemplo de uma sentença verdadeira a) 15 + 10 = 25 b) 2 . 5 = 10 exemplo de uma sentença falsa a) 10 + 3 = 18 b) 3 . 7 = 20 SENTEÇAS ABERTAS E SENTENÇAS FECHADAS Sentenças abertas são aquelas que possuem elementos desconhecidos. Esses elementos desconhecidos são chamados variáveis ou incógnitas. exemplos a) x + 4 = 9 (a variável é x) b) x + y = 20 (as variáveis são x e y) Sentenças fechada ou são aquelas que não possuem variáveis ou incógnitas. a) 15 -5 = 10 (verdadeira) b) 8 + 1 = 12 (falsa) EQUAÇÕES Equações são sentenças matemáticas abertas que apresentam o sinal de igualdade exemplos a) x - 3 = 13 ( a variável ou incógnita x) b) 3y + 7 = 15 ( A variável ou incógnita é y) A expressão à esquerdas do sinal = chama-se 1º membro A expressão à direita do sinal do igual = chama-se 2º membro RESOLUÇÃO DE EQUAÇÕES DO 1º GRAU COM UMA VARIÁVEL O processo de res

VALOR NÚMERICO DE UMA EXPRESSÃO ALGÉBRICA

Para obter o valor numérico de uma expressão algébrica, você deve proceder do seguinte modo: 1º Substituir as letras por números reais dados. 2º Efetuar as operações indicadas, devendo obedecer à seguinte ordem: a) Potenciação b) Divisão e multiplicação c) Adição e subtração IMPORTANTE! Convém utilizar parênteses quando substituímos letras por números negativos Exemplo 1 Calcular o valor numérica de 2x + 3a para x = 5 e a = -4 2.x+ 3.a 2 . 5 + 3 . (-4) 10 + (-12) -2 Exemplo 2 Calcular o valor numérico de x² - 7x +y para x = 5 e y = -1 x² - 7x + y 5² - 7 . 5 + (-1) 25 – 35 -1 -10 – 1 -11 Exemplo 3 Calcular o valor numérico de : 2 a + m / a + m ( para a = -1 e m = 3) 2. (-1) + 3 / (-1) + 3 -2 + 3 / -1 +3 ½ Exemplo 4 Calcular o valor numérico de 7 + a – b (para a= 2/3 e b= -1/2 ) 7 + a – b 7 + 2/3 – (-1/2) 7 + 2/3 + 1 / 2 42/6 + 4/6 + 3/6 49/6 EXERCICIOS 1) Calcule o valor numérico das expressões: a) x – y (para x =5 e y = -4) (R:

OPERAÇÕES COM RADICAIS

RADICAIS SEMELHANTES Radicais semelhantes são os que têm o mesmo índice e o mesmo radicando Exemplos de radicais semelhantes a) 7√5 e -2√5 b) 5³√2 e 4³√2 Exemplos de radicais não semelhantes a) 5√6 e 2√3 b) 4³√7 e 5√7 ADIÇÃO E SUBTRAÇÃO 1º CASO : Os radicais não são semelhantes Devemos proceder do seguinte modo: a) Extrair as raízes (exatas ou aproximadas) b) Somar ou subtrair os resultados Exemplos 1) √16 + √9 = 4 + 3 = 7 2) √49 - √25 = 7 – 5 = 2 3) √2 + √3 = 1,41 + 1,73 = 3,14 Neste último exemplo, o resultado obtido é aproximado, pois √2 e √3 são números irracionais (representação decimal infinita e não periódica) EXERCÍCIOS 1) Calcule a) √9 + √4 = 5 b) √25 - √16 = 1 c) √49 + √16 = 11 d) √100 - √36 = 4 e) √4 - √1 = 1 f) √25 - ³√8 = 3 g) ³√27 + ⁴√16 = 5 h) ³√125 - ³√8 = 3 i) √25 - √4 + √16 = 7 j) √49 + √25 - ³√64 = 8 2º CASO : Os radicais são semelhantes. Para adicionar ou subtrair radicais semelhantes, procedemos como na redução de