Pular para o conteúdo principal

Equação do Segundo Grau

As equações do 2º grau, ax2 + bx + c = 0 (a 0) , possuem duas notáveis relações entre as raízes x1 e x2 e os coeficientes a, b e c.
São chamadas de relações de Soma e Produto ou relações de Girard.
Consideremos a equação do 2º grau:
ax2 + bx + c = 0, com a 0 e com as raízes:
Equaçao segundo grau
Podemos estabelecer:
1º) A soma das raízes da equação do 2º grau por meio da relação:
Equaçao Segundo Grau

2º) O produto das raízes da equação do 2º grau através da relação:
Equaçao Segundo Grau
A partir desses valores e, dividindo a equação ax2 + bx + c = 0 pela constante a (coeficiente de x2), teremos a equação apresentada pela igualdade:
Equaçao Segundo Grau
em que S é a soma de suas raízes e P é o produto delas.
Podemos dar a essa nova apresentação da equação do 2º grau duas utilizações práticas:
1º ) Determinar uma equação do 2º grau cujas raízes sejam os números 2 e 7.
Tendo as raízes, podemos determinar:
S = 2 + 7 = 9 e P = 2 · 7 = 14
Com esses valores, podemos montar a equação:
Equaçao Segundo Grau
que é uma das equações do 2º grau cujas raízes são 2 e 7.

2º ) Resolver a equação do 2º grau:

x2– 7x + 12 = 0.
Pela observação da sentença que representa a equação, temos:
S = 7 e P = 12.
Basta, agora, com um “pouquinho” de criatividade, reconhecer dois números cuja soma é 7 e o produto é 12.
Claro que já percebemos que os números são 3 e 4. Portanto:
Equaçao Segundo Grau
2. Resolvendo Equações com Mudança de Variável
Freqüentemente nos deparamos com equações que, mesmo não sendo do 2º grau, podem ser resolvidas com o auxílio dela. Nessas situações, devemos nos valer de mudanças nas variáveis da equação de tal forma que ela se transforme, temporariamente, numa equação do 2º grau, como nos exemplos que veremos a seguir:
Exemplo 1
Resolver a equação:
x4 – 3x2 – 4 = 0
Notemos que esta é uma equação de quarto grau, porém com uma característica particular: apresenta apenas os termos de grau par.
Se fizermos:
x2 = y
teremos:
y2 – 3y – 4 = 0
Resolvendo esta equação, teremos:
y1 = –1 e y2 = 4
Considerando que y está ocupando o lugar de x2, teremos:
x2 = –1 ou x2 = 4
Considerando , teremos:
x = – 2 ou x = 2
Assim sendo:
Equação Segundo Grau

Exemplo 2
Resolver a equação:
(x2 + x)2 – 14 (x2 + x) + 24 = 0
Evidentemente, os produtos e as potências indicados podem ser desenvolvidos originando uma equação do quarto grau com uma certa complexidade na sua resolução. Observemos, por outro lado, que a expressão (x2 + x) se apresenta na equação mais de uma vez. Podemos tomar a iniciativa de substituí-la por uma única incógnita.
Se fizermos:
x2 + x = m
teremos:
m2 – 14m + 24 = 0
A resolução desta equação nos leva a dois valores de m: 2 e 12, que são, portanto, os valores de x2 + x.
Logo:
x2 + x = 2 ou x2 + x = 12
Assim, determinaremos duas equações do 2º grau:
x2 + x – 2 = 0
e
x2 + x – 12 = 0
cujas soluções representarão as soluções da equação original. Assim sendo, e pela resolução destas equações, teremos:
Equação Segundo Grau
www.vestibulandoweb.com.br

Comentários

Postagens mais visitadas deste blog

EQUAÇÃO DE 1° GRAU

EQUAÇÃO DE 1° GRAU SENTENÇAS Uma sentença matemática pode ser verdadeira ou falsa exemplo de uma sentença verdadeira a) 15 + 10 = 25 b) 2 . 5 = 10 exemplo de uma sentença falsa a) 10 + 3 = 18 b) 3 . 7 = 20 SENTEÇAS ABERTAS E SENTENÇAS FECHADAS Sentenças abertas são aquelas que possuem elementos desconhecidos. Esses elementos desconhecidos são chamados variáveis ou incógnitas. exemplos a) x + 4 = 9 (a variável é x) b) x + y = 20 (as variáveis são x e y) Sentenças fechada ou são aquelas que não possuem variáveis ou incógnitas. a) 15 -5 = 10 (verdadeira) b) 8 + 1 = 12 (falsa) EQUAÇÕES Equações são sentenças matemáticas abertas que apresentam o sinal de igualdade exemplos a) x - 3 = 13 ( a variável ou incógnita x) b) 3y + 7 = 15 ( A variável ou incógnita é y) A expressão à esquerdas do sinal = chama-se 1º membro A expressão à direita do sinal do igual = chama-se 2º membro RESOLUÇÃO DE EQUAÇÕES DO 1º GRAU COM UMA VARIÁVEL O processo de res

VALOR NÚMERICO DE UMA EXPRESSÃO ALGÉBRICA

Para obter o valor numérico de uma expressão algébrica, você deve proceder do seguinte modo: 1º Substituir as letras por números reais dados. 2º Efetuar as operações indicadas, devendo obedecer à seguinte ordem: a) Potenciação b) Divisão e multiplicação c) Adição e subtração IMPORTANTE! Convém utilizar parênteses quando substituímos letras por números negativos Exemplo 1 Calcular o valor numérica de 2x + 3a para x = 5 e a = -4 2.x+ 3.a 2 . 5 + 3 . (-4) 10 + (-12) -2 Exemplo 2 Calcular o valor numérico de x² - 7x +y para x = 5 e y = -1 x² - 7x + y 5² - 7 . 5 + (-1) 25 – 35 -1 -10 – 1 -11 Exemplo 3 Calcular o valor numérico de : 2 a + m / a + m ( para a = -1 e m = 3) 2. (-1) + 3 / (-1) + 3 -2 + 3 / -1 +3 ½ Exemplo 4 Calcular o valor numérico de 7 + a – b (para a= 2/3 e b= -1/2 ) 7 + a – b 7 + 2/3 – (-1/2) 7 + 2/3 + 1 / 2 42/6 + 4/6 + 3/6 49/6 EXERCICIOS 1) Calcule o valor numérico das expressões: a) x – y (para x =5 e y = -4) (R:

OPERAÇÕES COM RADICAIS

RADICAIS SEMELHANTES Radicais semelhantes são os que têm o mesmo índice e o mesmo radicando Exemplos de radicais semelhantes a) 7√5 e -2√5 b) 5³√2 e 4³√2 Exemplos de radicais não semelhantes a) 5√6 e 2√3 b) 4³√7 e 5√7 ADIÇÃO E SUBTRAÇÃO 1º CASO : Os radicais não são semelhantes Devemos proceder do seguinte modo: a) Extrair as raízes (exatas ou aproximadas) b) Somar ou subtrair os resultados Exemplos 1) √16 + √9 = 4 + 3 = 7 2) √49 - √25 = 7 – 5 = 2 3) √2 + √3 = 1,41 + 1,73 = 3,14 Neste último exemplo, o resultado obtido é aproximado, pois √2 e √3 são números irracionais (representação decimal infinita e não periódica) EXERCÍCIOS 1) Calcule a) √9 + √4 = 5 b) √25 - √16 = 1 c) √49 + √16 = 11 d) √100 - √36 = 4 e) √4 - √1 = 1 f) √25 - ³√8 = 3 g) ³√27 + ⁴√16 = 5 h) ³√125 - ³√8 = 3 i) √25 - √4 + √16 = 7 j) √49 + √25 - ³√64 = 8 2º CASO : Os radicais são semelhantes. Para adicionar ou subtrair radicais semelhantes, procedemos como na redução de