Pular para o conteúdo principal

Posição relativa entre duas circunferências

No estudo analítico da circunferência, os elementos raio, diâmetro e centro da circunferência são fundamentais para conclusões de diversos problemas e para a determinação da equação que define essa forma geométrica tão importante. Em se tratando de posições relativas entre duas circunferências, elas podem ser: tangentes, secantes, externas, internas ou concêntricas. Vamos analisar cada caso.
1. Circunferências tangentes.

a) Tangentes externas
Duas circunferências são tangentes internas quando possuem somente um ponto em comum e uma exterior à outra. A condição para que isso ocorra é que a distância entre os centros das duas circunferências seja equivalente à soma das medidas de seus raios.

dOC = r1 + r2
b) Tangentes internas
Duas circunferências são tangentes internas quando possuem apenas um ponto em comum e uma esteja no interior da outra. A condição para que isso ocorra é que a distância entre os dois centros seja igual à diferença entre os dois raios.
dOC = r1 - r2
2. Circunferências externas.
Duas circunferências são consideradas externas quando não possuem pontos em comum. A condição para que isso ocorra é que a distância entre os centros das circunferências deve ser maior que a soma das medidas de seus raios.
dOC > r1 + r2
3. Circunferências secantes.
Duas circunferências são consideradas secantes quando possuem dois pontos em comum. A condição para que isso aconteça é que a distância entre os centros das circunferências deve ser menor que a soma das medidas de seus raios.
dCO < r1 + r2
4. Circunferências internas.
Duas circunferências são consideradas internas quando não possuem pontos em comum e uma está localizada no interior da outra. A condição para que isso ocorra é que a distância entre os centros das circunferências deve ser equivalente à diferença entre as medidas de seus raios.
dOC < r1 - r2
5. Circunferências concêntricas.
Duas circunferências são consideradas concêntricas quando possuem o centro em comum. Nesse caso, a distância entre os centro é nula.
dCO = 0
Exemplo: Dadas as circunferências λ e σ, de equações:
λ: x2 + y2 = 9
σ: (x – 7)2 + y2 = 16
Verifique a posição relativa entre elas.

Solução: Para resolução do problema devemos saber as coordenadas do centro e a medida do raio de cada uma das circunferências. Através da equação de cada uma podemos encontrar esses valores.
Como a equação de toda circunferência é da forma: (x – x0)2 + (y – y0)2 = r2, teremos:

Conhecidos os elementos de cada uma das circunferências, vamos calcular a distância entre os centros, utilizando a fórmula da distância entre dois pontos.

Por Marcelo Rigonatto
Especialista em Estatística e Modelagem Matemática

Comentários

Postagens mais visitadas deste blog

EQUAÇÃO DE 1° GRAU

EQUAÇÃO DE 1° GRAU SENTENÇAS Uma sentença matemática pode ser verdadeira ou falsa exemplo de uma sentença verdadeira a) 15 + 10 = 25 b) 2 . 5 = 10 exemplo de uma sentença falsa a) 10 + 3 = 18 b) 3 . 7 = 20 SENTEÇAS ABERTAS E SENTENÇAS FECHADAS Sentenças abertas são aquelas que possuem elementos desconhecidos. Esses elementos desconhecidos são chamados variáveis ou incógnitas. exemplos a) x + 4 = 9 (a variável é x) b) x + y = 20 (as variáveis são x e y) Sentenças fechada ou são aquelas que não possuem variáveis ou incógnitas. a) 15 -5 = 10 (verdadeira) b) 8 + 1 = 12 (falsa) EQUAÇÕES Equações são sentenças matemáticas abertas que apresentam o sinal de igualdade exemplos a) x - 3 = 13 ( a variável ou incógnita x) b) 3y + 7 = 15 ( A variável ou incógnita é y) A expressão à esquerdas do sinal = chama-se 1º membro A expressão à direita do sinal do igual = chama-se 2º membro RESOLUÇÃO DE EQUAÇÕES DO 1º GRAU COM UMA VARIÁVEL O processo de res

VALOR NÚMERICO DE UMA EXPRESSÃO ALGÉBRICA

Para obter o valor numérico de uma expressão algébrica, você deve proceder do seguinte modo: 1º Substituir as letras por números reais dados. 2º Efetuar as operações indicadas, devendo obedecer à seguinte ordem: a) Potenciação b) Divisão e multiplicação c) Adição e subtração IMPORTANTE! Convém utilizar parênteses quando substituímos letras por números negativos Exemplo 1 Calcular o valor numérica de 2x + 3a para x = 5 e a = -4 2.x+ 3.a 2 . 5 + 3 . (-4) 10 + (-12) -2 Exemplo 2 Calcular o valor numérico de x² - 7x +y para x = 5 e y = -1 x² - 7x + y 5² - 7 . 5 + (-1) 25 – 35 -1 -10 – 1 -11 Exemplo 3 Calcular o valor numérico de : 2 a + m / a + m ( para a = -1 e m = 3) 2. (-1) + 3 / (-1) + 3 -2 + 3 / -1 +3 ½ Exemplo 4 Calcular o valor numérico de 7 + a – b (para a= 2/3 e b= -1/2 ) 7 + a – b 7 + 2/3 – (-1/2) 7 + 2/3 + 1 / 2 42/6 + 4/6 + 3/6 49/6 EXERCICIOS 1) Calcule o valor numérico das expressões: a) x – y (para x =5 e y = -4) (R:

OPERAÇÕES COM RADICAIS

RADICAIS SEMELHANTES Radicais semelhantes são os que têm o mesmo índice e o mesmo radicando Exemplos de radicais semelhantes a) 7√5 e -2√5 b) 5³√2 e 4³√2 Exemplos de radicais não semelhantes a) 5√6 e 2√3 b) 4³√7 e 5√7 ADIÇÃO E SUBTRAÇÃO 1º CASO : Os radicais não são semelhantes Devemos proceder do seguinte modo: a) Extrair as raízes (exatas ou aproximadas) b) Somar ou subtrair os resultados Exemplos 1) √16 + √9 = 4 + 3 = 7 2) √49 - √25 = 7 – 5 = 2 3) √2 + √3 = 1,41 + 1,73 = 3,14 Neste último exemplo, o resultado obtido é aproximado, pois √2 e √3 são números irracionais (representação decimal infinita e não periódica) EXERCÍCIOS 1) Calcule a) √9 + √4 = 5 b) √25 - √16 = 1 c) √49 + √16 = 11 d) √100 - √36 = 4 e) √4 - √1 = 1 f) √25 - ³√8 = 3 g) ³√27 + ⁴√16 = 5 h) ³√125 - ³√8 = 3 i) √25 - √4 + √16 = 7 j) √49 + √25 - ³√64 = 8 2º CASO : Os radicais são semelhantes. Para adicionar ou subtrair radicais semelhantes, procedemos como na redução de