sexta-feira, 30 de agosto de 2019

Determinante de matriz de ordem 1, 2 ou 3

Podemos calcular o determinante de qualquer matriz desde que essa seja quadrada, ou seja, que a matriz tenha o mesmo número de linhas e de colunas (seja uma matriz de ordem n x n).

Podemos dizer que determinante de uma matriz quadrada é o seu valor numérico.

Os elementos de uma matriz podem ser colocados entre parênteses, colchetes ou entre duas barras duplas e os elementos dos determinantes são colocados entre duas barras.

Matriz de ordem 1

Quando uma matriz possui apenas um elemento ou possui apenas uma linha e uma coluna, dizemos que essa matriz é de ordem 1. Veja alguns exemplos:

Se A = [10], então o seu determinante será representado assim: det A = |10| = 10

Se B = (-25), então o seu determinante será representado assim: det B = |-25| = -25

Podemos concluir que o determinante de ordem 1 terá o seu valor numérico sempre igual ao seu elemento.
Matriz de ordem 2
Dada a matriz A de ordem dois A = , o seu determinante será calculado da seguinte forma:

O determinante de ordem dois possui uma diagonal principal e uma diagonal secundária.



O cálculo do seu valor numérico é feito pela diferença do produto da diagonal principal com o produto da diagonal secundária.

det A = = - 3 – (- 10) = - 3 + 10 = 7

Matriz de ordem 3

Dada a matriz de ordem 3, B = o valor numérico do seu determinante é calculado da seguinte forma:

Primeiro representamos essa matriz em forma de determinante e repetimos as duas primeiras colunas.

det B =

Depois calculamos os produtos das diagonais principais e os produtos das diagonais secundárias.

det B =

Deve-se pegar o oposto dos produtos das diagonais secundárias e somar com os produtos das diagonais principais.

Det B = 0 – 40 + 0 – 15 + 0 – 4 = -59

Essa regra utilizada no cálculo do determinante de matriz de ordem 3 é chamada de Regra de Sarrus.
www.mundoeducacao.com.br

Nenhum comentário:

Postar um comentário