quarta-feira, 28 de agosto de 2019

Números Primos

Números primos são os números naturais que têm apenas dois divisores diferentes: o 1 (um) e ele mesmo.
Exemplos:
1) 2 tem apenas os divisores 1 e 2, portanto 2 é um número primo.
2) 17 tem apenas os divisores 1 e 17, portanto 17 é um número primo.
3) 10 tem os divisores 1, 2, 5 e 10, portanto 10 não é um número primo.
Observações:
=> 1 não é um número primo, porque ele tem apenas um divisor que é ele mesmo.
=> 2 é o único número primo que é par.
Os números que têm mais de dois divisores são chamados números compostos.
Exemplo: 15 tem mais de dois divisores => 15 é um número composto.
  • Reconhecimento de um número primo
Para saber se um número é primo, dividimos esse número pelos números primos 2, 3, 5, 7, 11 etc. até que tenhamos:
=> ou uma divisão com resto zero e neste caso o número não é primo,
=> ou uma divisão com quociente menor que o divisor e o resto diferente de zero. Neste caso o número é primo.
Exemplos:
1) O número 161:
  • não é par, portanto não é divisível por 2;
  • 1+6+1 = 8, portanto não é divisível por 3;
  • não termina em 0 nem em 5, portanto não é divisível por 5;
  • por 7: 161 / 7 = 23, com resto zero, logo 161 é divisível por 7, e portanto não é um número primo.
2) O número 113:
  • não é par, portanto não é divisível por 2;
  • 1+1+3 = 5, portanto não é divisível por 3;
  • não termina em 0 nem em 5, portanto não é divisível por 5;
  • por 7: 113 / 7 = 16, com resto 1. O quociente (16) ainda é maior que o divisor (7).
  • por 11: 113 / 11 = 10, com resto 3. O quociente (10) é menor que o divisor (11), e além disso o resto é diferente de zero (o resto vale 3), portanto 113 é um número primo.
EXERCÍCIOS
1 – O que é um número primo?
2 – Quais são os dez primeiros números primos?
3 – Qual é o único número par que é primo?
4 – Verdadeiro ou falso.
a) Todos os números primos são ímpares.
b) Existem números que são primos e compostos.
5 – Verifique se os números abaixo são primos ou compostos.
31 33 41 45 57 73 91 97 99 239
fonte: Cruz Junior Florisvaldo

Nenhum comentário:

Postar um comentário