Pular para o conteúdo principal

Resistores, Geradores e Capacitores






1. Resistores

Os resistores são caracterizados por uma grandeza física que mede a aposição, oferecida pelas partículas que os constituem, à passagem de corrente elétrica.

Seja o resistor representado no trecho de circuito AB, onde se aplica uma ddp U entre seus extremos e se estabelece uma corrente de intensidade i.

A 0———————/\/\/\/\/\/\———————0 B
-> i

Define-se como resistência elétrica R do resistor o quociente da ddp U entre seus terminais pela corrente i que o atravessa.

U
R = —
i

Observações:

De uma maneira em geral, a resistência elétrica R do resistor depende tanto da sua natureza e das suas dimensões como da sua temperatura. Portanto, em geral, a resistência de um resistor é uma grandeza variável.

Os fios metálicos que fazem parte de um circuito elétrico também funcionam como resistores, ou seja, eles também oferecem uma certa resistência à passagem de corrente. Ocorre, porém, que normalmente sua resistência é muito pequena, quando comparada com a resistência dos demais resistores envolvidos no circuito, podendo ser considerada desprezível. Nesses casos, sua representação é uma linha contínua.

A 0————————————————————0
-> fio condutor (resistência desprezível)

O resistor é um ente concreto e a resistência elétrica é um ente abstrato.


1.1. Primeira Lei de Ohm

Numa experiência, Georg Simon Ohm aplicou, sucessivamente, as tensões U1, U2, U3, ... , Un entre os terminais de um resistor e obteve, respectivamente, as correntes i1, i2, i3, ..., in.

Observou-se que esses valores são relacionados da seguinte forma:

U1 U2 U3 Un U
— = — = — = ... = — = — = R = constante
i1 i2 i3 in i

A intensidade da corrente elétrica que percorre um resistor é diretamente proporcional à tensão entre seus terminais.
Essa lei de Ohm é valida apenas para alguns resistores, que foram determinados resistores ôhmicos.

Os resistores para os quais a resistência não se mantém constante são denominados resistores não-ôhmicos.

A unidade de resistência elétrica no SI é ohm (Ω) definido por:

1 volt
———— = 1 ohm = 1 Ω
1 ampère

É usual a utilização de:
1 megaohm -> M Ω = 10 ⁶ Ω
1 microohm -> µ Ω = 10 - ⁶ Ω


1.2 Potência Dissipada

Consideramos um resistor de resistência R submetido á tensão U e percorrido por uma corrente i.
U
<——————————————>
↕ -> i R ↕
A 0—————/\/\/\/\/\/\/\/\—————0 B

Sabemos, da Eletrostática, que o trabalho (T) para deslocar uma quantidade de carga deltaQ do ponto A para o ponto B é dado por:

T = deltaQ . (VA — VB)
T = deltaQ . U

Dividindo-se ambos os membros pelo intervalo de tempo delta t decorrido para carga delta Q transferir-se de A para B, vem:

T delta Q
—— = —— . U
delta t delta t

T
Mas: —— = P (Potência)
delta t

delta Q
——— = i
delta t

Então, substituindo-se: P = U.i

A Potencia dissipada num trecho AB de um condutor qualquer é dada pelo produto da ddp U, entre os pontos a e B, pela intensidade da corrente elétrica entre esses pontos.

O termo dissipar é usado no sentido de consumir; logo, a quantidade de energia elétrica consumida no resistor, durante certo intervalo de tempo delta t vale: T = P. delta t

Como, pela definição de resistor, toda a energia consumida por ele é transformada em energia térmica, sendo dissipada sob a forma de calor, temos:

T = Q

Para se obter o calor Q em calorias, deve-se considerar a expressão:

T = J.Q (onde J = 4,18).

Uma unidade muito utilizada é o quilowatt-hora (kWh). Um kWh é a quantidade de energia com potencia de 1 kW, que é transformada no intervalo do tempo de 1h.


1.3 Segunda Lei de Ohm

Consideramos um fio condutor de comprimento ℓ e seção transversal de área S.

geradores

Através de experiências, Ohm verificou que a resistência elétrica R é diretamente proporcional ao comprimento do fio condutor e inversamente proporcional à área de sua seção transversal.

Em que: ρ é a resistividade elétrica.


R = ρ —
S

A constante de proporcionalidade ρ depende da natureza do material condutor, da temperatura e das unidades adotadas.

2. Geradores – Força Eletromotriz

Um gerador transforma uma modalidade qualquer de energia em energia elétrica. As cargas elétricas da corrente que atravessa o gerador chegam pelo pólo de potencial mais alto, pólo positivo.

É considerado gerador ideal aquele que consegue transferir às cargas que o atravessam toda energia elétrica transformada.

A diferença de potencial entre os pólos de um gerador ideal é chamado força eletromotriz (f.e.m.). A f.e.m. é representada pela letra E, e sendo uma ddp sua unidade de medida é volt.


2.1. Gerador Ideal

Na pratica, quando a corrente elétrica atravessa o gerador ela o faz através de condutores, que oferecem uma certa resistência à sua passagem. A essa resistência denominamos resistência internado gerador (r).

A diferença de potencial U entres os pólos de um gerador real é igual à diferença entre sua f.e.m. E e a queda de tensão r . i causada pela passagem da corrente i pelo gerador de resistência interna r.

Equação do gerador: U = E – r.i


2.2. Rendimento de um Gerador

Multiplicando a equação do gerador U = E – r.i pela corrente i, temos U.i = E.i-r.i². Lembrando que a potencia elétrica é dada por P = U.i, temos:

Pu = Pt – Pd, onde:

Pu = U . i: potência útil que o gerador coloca à disposição do circuito.
Pt = E . i: potência total do gerador.
Pd = r . i²: potência dissipada pela resistência interna.

3. Receptores – Força Contra-Eletromotriz

Quando um gerador estabelece uma diferença de potencial U entre os terminais de um receptor, ela se divide da seguinte forma: uma parte desta E’, chamada de força contra eletromotriz (f.c.e.m.), é utilizada de forma util e a outra parte, que representa a queda de tensão r’ . i decorrente da passagem da corrente elétrica, é dissipada sob forma de calor.

receptores


Assim, a equação do receptor é: U = E’ + r . i

Num receptor as cargas elétricas chegam ao pólo positivo, sofrem uma perda de energia na realização de um trabalho útil e saem, pelo pólo negativo com um potencial elétrico menor.


3.1. Rendimento de um Receptor

Multiplicando a equação do receptor pela corrente i, temos:

U = E’ + r’i -> Ui = E’i +r . i²
Pt = Pu + Pd

Em que:

Pt = Ui: potencia total consumida pelo receptor.

Pu = E’i: potencia útil.

Pd = r’ . i²: potencia dissipada pela resistência interna do receptor.

receptores

O rendimento elétrico de um receptor é a relação entre a potência útil e a potência total consumida pelo receptor:

Pu
η = —
Pt

Mas,

Pu = E’ . i
Pt = U . i


Conclusão

Tiramos a conclusão neste estudo que, resistores, geradores e receptores tem muita importância para com a população, pois são eles que colaboram com a produção de energia elétrica que trazem luz para as pessoas em suas casas.


Bibliografia

1 BONJORNO, Regina,José Roberto, Valter e RAMOS, Clinton Marcico. Física 2º Grau. São Paulo: FTD, 1988.

Autoria: Diego Bortoli

Comentários

Postagens mais visitadas deste blog

EQUAÇÃO DE 1° GRAU

EQUAÇÃO DE 1° GRAU SENTENÇAS Uma sentença matemática pode ser verdadeira ou falsa exemplo de uma sentença verdadeira a) 15 + 10 = 25 b) 2 . 5 = 10 exemplo de uma sentença falsa a) 10 + 3 = 18 b) 3 . 7 = 20 SENTEÇAS ABERTAS E SENTENÇAS FECHADAS Sentenças abertas são aquelas que possuem elementos desconhecidos. Esses elementos desconhecidos são chamados variáveis ou incógnitas. exemplos a) x + 4 = 9 (a variável é x) b) x + y = 20 (as variáveis são x e y) Sentenças fechada ou são aquelas que não possuem variáveis ou incógnitas. a) 15 -5 = 10 (verdadeira) b) 8 + 1 = 12 (falsa) EQUAÇÕES Equações são sentenças matemáticas abertas que apresentam o sinal de igualdade exemplos a) x - 3 = 13 ( a variável ou incógnita x) b) 3y + 7 = 15 ( A variável ou incógnita é y) A expressão à esquerdas do sinal = chama-se 1º membro A expressão à direita do sinal do igual = chama-se 2º membro RESOLUÇÃO DE EQUAÇÕES DO 1º GRAU COM UMA VARIÁVEL O processo de res

VALOR NÚMERICO DE UMA EXPRESSÃO ALGÉBRICA

Para obter o valor numérico de uma expressão algébrica, você deve proceder do seguinte modo: 1º Substituir as letras por números reais dados. 2º Efetuar as operações indicadas, devendo obedecer à seguinte ordem: a) Potenciação b) Divisão e multiplicação c) Adição e subtração IMPORTANTE! Convém utilizar parênteses quando substituímos letras por números negativos Exemplo 1 Calcular o valor numérica de 2x + 3a para x = 5 e a = -4 2.x+ 3.a 2 . 5 + 3 . (-4) 10 + (-12) -2 Exemplo 2 Calcular o valor numérico de x² - 7x +y para x = 5 e y = -1 x² - 7x + y 5² - 7 . 5 + (-1) 25 – 35 -1 -10 – 1 -11 Exemplo 3 Calcular o valor numérico de : 2 a + m / a + m ( para a = -1 e m = 3) 2. (-1) + 3 / (-1) + 3 -2 + 3 / -1 +3 ½ Exemplo 4 Calcular o valor numérico de 7 + a – b (para a= 2/3 e b= -1/2 ) 7 + a – b 7 + 2/3 – (-1/2) 7 + 2/3 + 1 / 2 42/6 + 4/6 + 3/6 49/6 EXERCICIOS 1) Calcule o valor numérico das expressões: a) x – y (para x =5 e y = -4) (R:

OPERAÇÕES COM RADICAIS

RADICAIS SEMELHANTES Radicais semelhantes são os que têm o mesmo índice e o mesmo radicando Exemplos de radicais semelhantes a) 7√5 e -2√5 b) 5³√2 e 4³√2 Exemplos de radicais não semelhantes a) 5√6 e 2√3 b) 4³√7 e 5√7 ADIÇÃO E SUBTRAÇÃO 1º CASO : Os radicais não são semelhantes Devemos proceder do seguinte modo: a) Extrair as raízes (exatas ou aproximadas) b) Somar ou subtrair os resultados Exemplos 1) √16 + √9 = 4 + 3 = 7 2) √49 - √25 = 7 – 5 = 2 3) √2 + √3 = 1,41 + 1,73 = 3,14 Neste último exemplo, o resultado obtido é aproximado, pois √2 e √3 são números irracionais (representação decimal infinita e não periódica) EXERCÍCIOS 1) Calcule a) √9 + √4 = 5 b) √25 - √16 = 1 c) √49 + √16 = 11 d) √100 - √36 = 4 e) √4 - √1 = 1 f) √25 - ³√8 = 3 g) ³√27 + ⁴√16 = 5 h) ³√125 - ³√8 = 3 i) √25 - √4 + √16 = 7 j) √49 + √25 - ³√64 = 8 2º CASO : Os radicais são semelhantes. Para adicionar ou subtrair radicais semelhantes, procedemos como na redução de