quarta-feira, 20 de maio de 2020

RESOLUÇÃO DE EQUAÇÃO INCOMPLETAS

RESOLUÇÃO DE EQUAÇÃO INCOMPLETAS



Resolver uma equação é determinar todas as suas soluções. Vejamos, através de exemplos, como se resolvem as equações incompletas do 2° grau

1° CASO – equações da forma ax² + c = 0, (b = 0)

Exemplos:

1) x² - 25 = 0
x² = 25
x = √25
x = 5
logo V= (+5 e -5)

2) 2x² - 18 = 0
2x² = 18
x² = 18/2
x² = 9
x = √9
x = 3
logo V= (-3 e +3)

3) 7x² - 14 = 0
7x² = 14
x² = 14/7
x² = 2
x = √2
logo V = (-√2 e +√2)

4) x²+ 25 = 0
x² = -25
x = √-25
obs: não existe nenhum número real que elevado ao quadrado seja igual a -25

EXERCÍCIOS

1) Resolva as seguintes equações do 2° grau

a) x² - 49 = 0 (R: -7 e +7)
b) x² = 1 (R: +1 e -1)
c) 2x² - 50 = 0 (R: 5 e -5)
d) 7x² - 7 = 0 (R: 1 e -1)
e) 5x² - 15 = 0 (R: √3 e -√3)
f) 21 = 7x² (R: √3 e -√3)
g) 5x² + 20 = 0 (R: vazio)
h) 7x² + 2 = 30 (R: 2 e -2 )
i) 2x² - 90 = 8 (R: 7 e -7)
j) 4x² - 27 = x² (R:3 e -3)
k) 8x² = 60 – 7x² (R: 2 e -2)
l) 3(x² - 1 ) = 24 (R: 3 e -3)
m) 2(x² - 1) = x² + 7 (R:3 e -3)
n) 5(x² - 1) = 4(x² + 1) (R:3 e -3)
o) (x – 3)(x + 4) + 8 = x (R:2 e -2)

2° CASO: Equações da forma ax² + bx = 0 ( c = 0)

Propriedade: Para que um produto seja nulo é preciso que um dos fatores seja zero .

Exemplos

1) resolver x² - 5x = 0
fatorando x ( x – 5) = 0

deixando um dos fatores nulo temos x = 0

e o outro x – 5 = 0 , passando o 5 para o outro lado do igual temos x = 5

logo V= (0 e 5)

2) resolver: 3x² - 10x = 0
fatorando: x (3x – 10) = 0

deixando um dos fatores nulo temos x = 0

Tendo também 3x – 10 = 0
3x = 10
x = 10/3

logo V= (0 e 10/3)

Observe que, nesse caso, uma das raízes é sempre zero.


EXERCÍCIOS

1) Resolva as seguintes equações do 2° grau.

a) x² - 7x = 0 (R: 0 e 7)
b) x² + 5x = 0 (R: 0 e -5)
c) 4x² - 9x = 0 (R: 0 e 9/4)
d) 3x² + 5x =0 (R: 0 e -5/3)
e) 4x² - 12x = 0 (R: 0 e 3)
f) 5x² + x = 0 (R: 0 e -1/5)
g) x² + x = 0 (R: 0 e -1)
h) 7x² - x = 0 (R: 0 e 1/7)
i) 2x² = 7x (R: 0 e 7/2)
j) 2x² = 8x (R: 0 e 4)
k) 7x² = -14x (R: 0 e -2)
l) -2x² + 10x = 0 (R: 0 e 5)

2) Resolva as seguintes equações do 2° grau

a) x² + x ( x – 6 ) = 0 (R: 0 e 3)
b) x(x + 3) = 5x (R: 0 e 2)
c) x(x – 3) -2 ( x-3) = 6 (R: 0 e 5)
d) ( x + 5)² = 25 (R: 0 e -10)
e) (x – 2)² = 4 – 9x (R: 0 e -5)
f) (x + 1) (x – 3) = -3 (R: 0 e 2)

Um comentário: