Toda fórmula do Cálculo Proposicional determina uma operação correspondente entre conjuntos :
- a negação (~ ) corresponde à complementação ( ’ ),
- a conjunção (Ù ) corresponde à intersecção (Ç ) ,
- a disjunção (Ú ) corresponde à união (È ).
Exemplo: (( p Ú q) Ù ~ p)corresponde a (( p È q ) Ç p’)
Podemos expressar, as operações entre conjuntos através dos DIAGRAMAS DE EULER-VENN (John Venn 1834-1923) que são úteis na verificação de propriedades de operações entre conjuntos, mas não devem ser considerados instrumentos de prova matemática rigorosa. Verifique seu conhecimento com estas operações considerando 2 conjuntos ou 3 conjuntos.
1.COMPLEMENTAÇÃO : p’que corresponde à NEGAÇÃO :~p
p | ~ p | |
1 | V | F |
2 | F | V |
2.UNIÃO : p È q que corresponde à DISJUNÇÃO: p Úq
p È q
p | q | p Ú q | |
1 | V | V | |
2 | V | F | |
3 | F | V | |
4 | F | F |
A região hachurada no diagrama corresponde às linhas da tabela onde a fórmula p Ú q assume valor V.
3. INTERSECÇÃO : p Ç q que corresponde à CONJUNÇÃO: p Ù q
p Ç q
p | q | p Ùq | |
1 | V | V | |
2 | V | F | |
3 | F | V | |
4 | F | F |
A figura abaixo forma um Diagrama de Venn apropriado para três conjuntos. Temos 8 regiões que correspondem, respectivamente, às 8 linhas da tabela-verdade ao lado do diagrama :
p | q | ||
1 | V | V | |
2 | V | V | |
3 | V | F | |
4 | V | F | |
5 | F | V | |
6 | F | V | |
7 | F | F | |
8 | F | F |
~((p Ù q) ® r ) | |||
F V V V | |||
V V F F | |||
F F V V | |||
F F V F | |||
F F V V | |||
F F V F | |||
F F V V | |||
F F V F |
CELINA ABAR
Nenhum comentário:
Postar um comentário