Solução:
Devemos substituir os valores de (x1,y1)=(3,1) e (x2,y2)=(4,3) em (y1-ax1)2+(y2-ax2)2
Fica assim:
(1-a.3)2+(3-a.4)2=1-6a+9a2+9-24a+16a2=25a2-30a+10 = 5a2-6a+2
Que resultou numa função quadrática com gráfico cuja concavidade é voltada para cima. Portanto, devemos encontrar o valor mínimo de x que será encontrado usando Xv=-b/2a
Letra A
5ª QUESTÃO
A um vendedor foi fixada uma meta de fazer um certo número de abordagens e também uma meta de sucesso de venda de 60% das abordagens. Quando havia realizado 75% das abordagens, o vendedor contabilizou um sucesso de 56% sobre as abordagens já realizadas, e percebeu que deveria aumentar sua porcentagem de sucessos nos 25% restantes para conseguir atingir a meta. Quanto deve ser o percentual de sucessos sobre o restante das abordagens para que ele consiga atingir a meta de sucesso fixada inicialmente?
A) 100%
B) 90%
C) 80%
D) 72%
E) 64%
A) 100%
B) 90%
C) 80%
D) 72%
E) 64%
Solução:
Total de abordagens: X
Meta de Sucesso: 60% de X = 0,6X
Quando realizou 75% das abordagens, ou seja 0,75X, teve sucesso de 56%. Portanto, devemos fazer:
56% de 0,75X = 0,42X
Faltam, então 0,6X – 0,42X = 0,18X, ou seja, 18% do total de abordagens.
Sabendo que restam apenas 25%=0,25 de abordagens para serem realizadas, usamos uma regra de três simples:
0,25--------100%
0,18---------y
Resultando em y = 18/0,25=72%
Resposta: D
jonasportal.blogspot.com.br
Nenhum comentário:
Postar um comentário