Os termos que possuem a mesma distância em uma seqüência numérica escrita na forma de uma PG possuem uma propriedade que diz o seguinte:
Se multiplicarmos os dois termos eqüidistantes esse produto será igual à multiplicação dos dois extremos da PG (a1 . an).
Dada a PG finita (5,10,20,40,80,160,320) os elementos 5 e 320 são os extremos e os elementos 10 e 160; 20 e 80 são eqüidistantes.
Se multiplicarmos os extremos, teremos: 5 x 320 = 1600
Multiplicando os termos eqüidistantes, teremos:
10 x 160 = 1600
20 x 80 = 1600
Portanto, podemos dizer que a Propriedade dos termos eqüidistantes dos extremos de uma PG finita é verdadeira, pois no exemplo acima o produto dos extremos é igual ao produto dos termos eqüidistantes.
Exemplo: dada uma PG finita composta por 8 elementos, sabendo que
a3 . a6 = 75497472 e que a1 = - 6. Determine o valor de a8.
Como a PG possui 8 elementos os termos a3 e a6 são eqüidistantes, portanto, o seu produto será igual ao produto dos extremos:
a3 . a6 = a1 . a8
75497472 = - 6 . a8
75497472 : (-6) = a8
Portanto, a8 = -12582912.
Ao representarmos uma seqüência numérica devemos colocar seus elementos entre parênteses. Veja alguns exemplos de seqüências numéricas:
• (2, 4, 6, 8, 10, 12, ... ) é uma seqüência de números pares positivos.
• (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11...) é uma seqüência de números naturais.
• (10, 20, 30, 40, 50...) é uma seqüência de números múltiplos de 10.
• (10, 15, 20, 30) é uma seqüência de números múltiplos de 5, maiores que cinco e menores que 35.
Essas seqüências são separadas em dois tipos:
• Seqüência finita é uma seqüência numérica na qual os elementos têm fim, como por exemplo, a seqüência dos números múltiplos de 5 maiores que 5 e menores que 35.
• Seqüência infinita é uma seqüência que não possui fim, ou seja, seus elementos seguem ao infinito, por exemplo: a seqüência dos números naturais.
Em uma seqüencia numérica qualquer, o primeiro termo é representado por a1, o segundo termo é a2, o terceiro a3 e assim por diante. Em uma seqüência numérica finita desconhecida, o último elemento é representado por an. A letra n determina o número de elementos da seqüência.
(a1, a2, a3, a4, ... , an, ... ) seqüência infinita.
(a1, a2, a3, a4, ... , an) seqüência finita.
Para obtermos os elementos de uma seqüência é preciso ter uma lei de formação da seqüência. Por exemplo:
Determine os cinco primeiros elementos de uma seqüência tal que an = 10n + 1, n N*
a1 = 101 + 1 = 10 + 1 = 11
a2 = 102 + 1 = 100 + 1 = 101
a3 = 103 + 1 = 1000 + 1 = 1001
a4 = 104 + 1 = 10000 + 1 = 10001
a5 = 105 + 1 = 100000 + 1 = 100001
Portanto, a seqüência será (11, 101, 1001, 10001, 100001).
Progressão geométrica finita é uma PG que tem um número determinado de elementos. Por exemplo, a seqüência (3,6,12,24,48) é uma PG de razão igual a q = 2.
A soma dos temos dessa PG será 3 + 6 + 12 + 24 + 48 = 93. Fazer essa soma é fácil, pois ela possui apenas cinco elementos, caso seja necessário somar os termos de uma PG com mais de dez elementos, o que é mais complicado, é preciso utilizar uma fórmula. Veja a sua demonstração:
Dada uma PG finita qualquer com n elemento, ou seja, com a quantidade de elementos indefinida. PG finita (a1, a2, a3, ... , an). A soma desses n elementos será feita da seguinte forma:
Sn = a1 + a2 + a3 + ... + an
Sabendo que a2 = a1 . q; a3 = a1 . q2; an = a1 . qn – 1
Podemos dizer que a soma dessa PG será:
Sn = a1 + a1 . q + a1 . q2 + a1 . q3 + ... + a1 . qn – 2 + a1 . qn – 1.
Como se trata de uma equação, se multiplicar um membro é preciso multiplicar o outro, por isso é necessário multiplicar os dois termos da última equação por q:
q . Sn = (a1 + a1 . q + a1 . q2 + a1 . q3 + ... + a1 . qn – 1)
q . Sn = a1 . q + a1 . q2 + a1 . q3 + a1 . q4 + ... + a1 . qn – 1 + a1 . qn
Fazendo a subtração:
Colocando em evidência os termos semelhantes, temos:
q . Sn – q . Sn = a1 . qn – a1
Sn (q - 1) = a1 (qn – 1)
Isolando o termo Sn (soma dos elementos), iremos obter a seguinte fórmula:
Sn = a1 (qn – 1)
q - 1
Portanto, a fórmula para obter a soma dos n elementos de uma PG finita é:
Sn = a1 (1 - qn )
1 - q
Exemplo: Dê a soma dos termos da seguinte PG (7,14,28, ... , 3584).
Para utilizarmos a fórmula da soma é preciso saber quem é o 1º termo, a razão e a quantidade de elementos que essa PG possui.
a1 = 7
q = 2
n = ?
Sn = ?
Portanto, é preciso que encontremos a quantidade de elementos que possui essa PG, utilizando a fórmula do termo geral.
an = a1 . qn – 1
3584 = 7 . 2n – 1
3584 : 7 = 2n – 1
512 = 2n – 1
29 = 2n – 1
n – 1 = 9
n = 10
Sn = a1 (qn – 1)
q - 1
S10 = 7 (210 – 1)
2 – 1
S10 = 7 (1024 – 1)
2 – 1
S10 = 7 . 1023
S10 = 7161
A seqüência (8 , 2 , a , b , ...) é uma P.G e a seqüência (b , 3/16 , c , ...) é uma P.A.
a) Qual é o valor de c?
Primeiro é preciso levar em consideração a P.G.
(8 , 2 , a , b , ...) a sua razão será igual a q = 2/8 = 1/4, dessa forma é necessário prosseguir dizendo que:
a : 2 = 1/4 → a = 1/2
a : b = 1/4 → 1/2 : b = 1/4 → b = 1/8
Com os valores de a e b, pode-se levar em consideração a P.A para que seja possível encontrar o valor do termo c.
(b , 3/16 , c , ...) substituindo o valor de b na P.A teremos:
(1/8 , 3/16 , c , ...), dessa forma, a razão dessa P.A será: r = 3/16 – 1/8 = 1/16.
Com o valor da razão podemos dizer que:
c – 3/16 = r
c – 3/16 = 1/16
c = 1/16 + 3/16
c = 1/4
www.mundoeducacao.com.br
Nenhum comentário:
Postar um comentário