Pular para o conteúdo principal

Sistemas Lineares

Sistemas Lineares
Equação linear
Equação linear é toda equação da forma:
a1x1 + a2x2+ a3x3 + ... + anxn = b
em que a1, a2, a3, ... , an são números reais, que recebem o nome de coeficientes das incógnitas
x1, x2,x3, ... , xn, e b é um número real chamado termo independente ( quando b=0, a equação recebe o nome de linear homogênea).
Veja alguns exemplos de equações lineares:
  • 3x - 2y + 4z = 7
  • -2x + 4z = 3t - y + 4
  • (homogênea)

As equações a seguir não são lineares:
  • xy - 3z + t = 8
  • x2- 4y = 3t - 4
Sistema linear
Um conjunto de equações lineares da forma:
é um sistema linear de m equações e n incógnitas.
A solução de um sistema linear é a n-upla de números reais ordenados (r1, r2, r3,..., rn) que é, simultaneamente, solução de todas as equações do sistema.
Matrizes associadas a um sistema linear
A um sistema linear podemos associar as seguintes matrizes:
  • matriz incompleta: a matriz A formada pelos coeficientes das incógnitas do sistema.
Em relação ao sistema:
a matriz incompleta é:
  • matriz completa: matriz B que se obtém acrescentando à matriz incompleta uma última coluna formada pelos termos independentes das equações do sitema.
Assim, para o mesmo sistema acima, a matriz completa é:
Sistemas homogêneos
Um sistema é homogêneo quando todos os termos independentes da equações são nulos:
Veja um exemplo:
A n-upla (0, 0, 0,...,0) é sempre solução de um sistema homogêneo com n incógnitas e recebe o nome de solução trivial. Quando existem, as demais soluções são chamadas não-triviais.
Classificação de um sistema quanto ao número de soluções
Resolvendo o sistema , encontramos uma única solução: o par ordenado (3,5). Assim, dizemos que o sistema é possível (tem solução) e determinado (solução única).
No caso do sistema , verificamos que os pares ordenados (0,8), (1,7),(2,6),(3,5),(4,4),(5,3),...são algumas de suas infinitas soluções. Por isso, dizemos que o sistema é possível (tem solução) e indeterminado (infinitas soluções).
Para , verificamos que nenhum par ordenado satisfaz simultaneamente as equações. Portanto, o sistema é impossível (não tem solução).

Resumindo, um sistema linear pode ser:
a) possível e determinado (solução única);
b) possível e indeterminado (infinitas soluções);
c) impossível (não tem solução).
Sistema normal
Um sistema é normal quando tem o mesmo número de equações (m) e de incógnitas (n) e o determinante da matriz incompleta associada ao sistema é diferente de zero.
Se m=n e det A 0, então o sistema é normal.
Regra de Cramer
Todo sistema normal tem uma única solução dada por:
em que i { 1,2,3,...,n}, D= det A é o determinante da matriz incompleta associada ao sistema, e Dxi é o determinante obtido pela substituição, na matriz incompleta, da coluna i pela coluna formada pelos termos independentes.
Discussão de um sistema linear
Se um sistema linear tem n equações e n incógnitas, ele pode ser:
a) possível e determinado, se D=det A0; caso em que a solução é única.
Exemplo:
m=n=3
Então, o sistema é possível e determinado, tendo solução única.
b) possível e indeterminado, se D= Dx1 = Dx2 = Dx3 = ... = Dxn= 0, para n=2. Se n3, essa condição só será válida se não houver equações com coeficientes das incógnitas respectivamente proporcionais e termos independentes não-proporcionais.
Um sistema possível e indeterminado apresenta infinitas soluções.
Exemplo:
D=0, Dx =0, Dy=0 e Dz=0
Assim, o sistema é possível e indeterminado, tendo infinitas soluções.
c) impossível, se D=0 e Dxi0, 1 in; caso em que o sistema não tem solução.
Exemplo:
Como D=0 e Dx0, o sistema é impossível e não apresenta solução.
Sistemas Equivalentes
Dois sistemas são equivalentes quando possuem o mesmo conjunto solução.
Por exemplo, dados os sistemas:
e
verificamos que o par ordenado (x, y) = (1, 2) satisfaz ambos e é único. Logo, S1 e S2 são equivalentes: S1 ~ S2.
Propriedades
a) Trocando de posição as equações de um sistema, obtemos outro sistema equivalente.
Por exemplo:
e
S1 ~S2

b) Multiplicando uma ou mais equações de um sistema por um número K (K IR*), obtemos um sistema equivalente ao anterior. Por exemplo:
S1 ~S2
c) Adicionando a uma das equações de um sistema o produto de outra equação desse mesmo sistema por um número k ( K IR*), obtemos um sistema equivalente ao anterior.
Por exemplo:
Dado , substituindo a equação (II) pela soma do produto de (I) por -1 com (II), obtemos:
S1~S2, pois (x,y)=(2,1) é solução de ambos os sistemas.Sistemas escalonados
Utilizamos a regra de Cramer para discutir e resolver sistemas lineares em que o número de equações (m) é igual ao número de incógnitas (n). Quando m e n são maiores que três, torna-se muito trabalhoso utilizar essa regra. Por isso, usamos a técnica do escalonamento, que facilita a discussão e resolução de quaisquer sistemas lineares.
Dizemos que um sistema, em que existe pelo menos um coeficiente não-nulo em cada equação, está escalonado se o número de coeficientes nulos antes do primeiro coeficiente não nulo aumenta de equação para equação.
Para escalonar um sistema adotamos o seguinte procedimento:
a) Fixamos como 1º equação uma das que possuem o coeficiente da 1º incógnita diferente de zero.
b) Utilizando as propriedades de sistemas equivalentes, anulamos todos os coeficientes da 1ª incógnita das demais equações.
c) Repetimos o processo com as demais incógnitas, até que o sistema se torne escalonado.
Vamos então aplicar a técnica do escalonamento, considerando dois tipos de sistema:
I. O número de equações é igual ao número de incógnitas (m=n)
Exemplo 1:
1ºpasso: Anulamos todos os coeficientes da 1º incógnita a partir da 2º equação, aplicando as propriedades dos sistemas equivalentes:
  • Trocamos de posição a 1º equação com a 2º equação, de modo que o 1º coeficiente de x seja igual a 1:
  • Trocamos a 2º equação pela soma da 1º equação, multiplicada por -2, com a 2º equação:
  • Trocamos a 3º equação pela soma da 1º equação, multiplicada por -3, com a 3º equação:
2º passo: Anulamos os coeficientes da 2º incógnita a partir da 3º equação:
  • Trocamos a 3º equação pela soma da 2º equação, multiplicada por -1, com a 3º equação:
Agora o sistema está escalonado e podemos resolvê-lo.
-2z=-6 z=3
Substituindo z=3 em (II):
-7y - 3(3)= -2 -7y - 9 = -2 y=-1
Substituindo z=3 e y=-1 em (I):
x + 2(-1) + 3= 3 x=2
Então, x=2, y=-1 e z=3
www.somatematica.com.br

Comentários

Postagens mais visitadas deste blog

EQUAÇÃO DE 1° GRAU

EQUAÇÃO DE 1° GRAU SENTENÇAS Uma sentença matemática pode ser verdadeira ou falsa exemplo de uma sentença verdadeira a) 15 + 10 = 25 b) 2 . 5 = 10 exemplo de uma sentença falsa a) 10 + 3 = 18 b) 3 . 7 = 20 SENTEÇAS ABERTAS E SENTENÇAS FECHADAS Sentenças abertas são aquelas que possuem elementos desconhecidos. Esses elementos desconhecidos são chamados variáveis ou incógnitas. exemplos a) x + 4 = 9 (a variável é x) b) x + y = 20 (as variáveis são x e y) Sentenças fechada ou são aquelas que não possuem variáveis ou incógnitas. a) 15 -5 = 10 (verdadeira) b) 8 + 1 = 12 (falsa) EQUAÇÕES Equações são sentenças matemáticas abertas que apresentam o sinal de igualdade exemplos a) x - 3 = 13 ( a variável ou incógnita x) b) 3y + 7 = 15 ( A variável ou incógnita é y) A expressão à esquerdas do sinal = chama-se 1º membro A expressão à direita do sinal do igual = chama-se 2º membro RESOLUÇÃO DE EQUAÇÕES DO 1º GRAU COM UMA VARIÁVEL O processo de res

VALOR NÚMERICO DE UMA EXPRESSÃO ALGÉBRICA

Para obter o valor numérico de uma expressão algébrica, você deve proceder do seguinte modo: 1º Substituir as letras por números reais dados. 2º Efetuar as operações indicadas, devendo obedecer à seguinte ordem: a) Potenciação b) Divisão e multiplicação c) Adição e subtração IMPORTANTE! Convém utilizar parênteses quando substituímos letras por números negativos Exemplo 1 Calcular o valor numérica de 2x + 3a para x = 5 e a = -4 2.x+ 3.a 2 . 5 + 3 . (-4) 10 + (-12) -2 Exemplo 2 Calcular o valor numérico de x² - 7x +y para x = 5 e y = -1 x² - 7x + y 5² - 7 . 5 + (-1) 25 – 35 -1 -10 – 1 -11 Exemplo 3 Calcular o valor numérico de : 2 a + m / a + m ( para a = -1 e m = 3) 2. (-1) + 3 / (-1) + 3 -2 + 3 / -1 +3 ½ Exemplo 4 Calcular o valor numérico de 7 + a – b (para a= 2/3 e b= -1/2 ) 7 + a – b 7 + 2/3 – (-1/2) 7 + 2/3 + 1 / 2 42/6 + 4/6 + 3/6 49/6 EXERCICIOS 1) Calcule o valor numérico das expressões: a) x – y (para x =5 e y = -4) (R:

OPERAÇÕES COM RADICAIS

RADICAIS SEMELHANTES Radicais semelhantes são os que têm o mesmo índice e o mesmo radicando Exemplos de radicais semelhantes a) 7√5 e -2√5 b) 5³√2 e 4³√2 Exemplos de radicais não semelhantes a) 5√6 e 2√3 b) 4³√7 e 5√7 ADIÇÃO E SUBTRAÇÃO 1º CASO : Os radicais não são semelhantes Devemos proceder do seguinte modo: a) Extrair as raízes (exatas ou aproximadas) b) Somar ou subtrair os resultados Exemplos 1) √16 + √9 = 4 + 3 = 7 2) √49 - √25 = 7 – 5 = 2 3) √2 + √3 = 1,41 + 1,73 = 3,14 Neste último exemplo, o resultado obtido é aproximado, pois √2 e √3 são números irracionais (representação decimal infinita e não periódica) EXERCÍCIOS 1) Calcule a) √9 + √4 = 5 b) √25 - √16 = 1 c) √49 + √16 = 11 d) √100 - √36 = 4 e) √4 - √1 = 1 f) √25 - ³√8 = 3 g) ³√27 + ⁴√16 = 5 h) ³√125 - ³√8 = 3 i) √25 - √4 + √16 = 7 j) √49 + √25 - ³√64 = 8 2º CASO : Os radicais são semelhantes. Para adicionar ou subtrair radicais semelhantes, procedemos como na redução de