POTENCIAÇÃO E RADICIAÇÃO
POTENCIAÇÃO
Consideremos uma multiplicação em que todos os fatores são iguais
Exemplo
5x5x5, indicada por 5³
ou seja , 5³= 5x5x5=125
onde :
5 é a base (fator que se repete)
3 é o expoente ( o número de vezes que repetimos a base)
125 é a potência ( resultado da operação)
Outros exemplos :
a) 7²= 7x7=49
b) 4³= 4x4x4=64
c) 5= 5x5x5x5=625
d) 2= 2x2x2x2x2=32
O expoente 2 é chamado de quadrado
O expoente 3 é chamado de cubo
O expoente 4 é chamado de quarta potência.
O expoente 5 é chamado de quinta potência.
Assim:
a) 7² Lê-se: sete elevado ao quadrado
b) 4³ Lê-se: quatro elevado ao cubo
c) 5 Lê-se: cinco elevado a quarta potência
d) 2 Lê-se: dois elevado a quinta potência
Por convenção temos que:
1) todo o número elevado ao expoente 1 é igual à própria base,
exemplo
a) 8¹ = 8
b) 5¹ = 5
c) 15¹ = 15
2) todo o número elevado ao expoente zero é igual a 1
exemplo
a) 8º=1
b) 4º=1
c) 12º=1
EXERCÍCIOS
1) Em 7² = 49, responda:
a) Qual é a base?
b) Qual é o expoente?
c) Qual é a potência?
2) Escreva na forma de potência:
a) 4x4x4=
b) 5x5
c) 9x9x9x9x9=
d) 7x7x7x7
e) 2x2x2x2x2x2x2=
f) cxcxcxcxc=
3) Calcule a potência:
a) 3² =9
b) 8² =64
c) 2³= 8
d) 3³ = 27e) 6³ = 216
f) 2 = 16
g) 3 = 81
h) 3 = 243i) 1 = 1j) 0 = 0l) 1 = 1
m) 10² =100
n) 10³ =1000
o) 15² =225
p) 17² =289
q) 30² =900
4) Calcule as potências:
a)40² =1600
b)32² =1024
c)15³ = 3375
d) 30³= 27000
e) 11 =14641
f) 300² = 90000
g) 100³ = 1000000
h) 101² = 10201
5) Calcule as Potências:
a) 11² = 121b) 20² = 400
c) 17² =289
d) 0² = 0e) 0¹ = 0
f) 1⁶ = 1
g) 10³ = 1.000
h) 470¹ = 470i) 11³ = 1331
j) 67⁰ =1k) 1³⁰ = 1l) 10⁵ = 100000m) 1⁵ = 1n) 15³ = 3375
o) 1² = 1
p) 1001⁰= 1
RADICIAÇÃO
Qual o número que elevado ao quadrado é igual a 9?
Solução
Sendo 3² = 9, podemos escrever que √9 = 3
Essa operação chama-se radiciação, que é a operação inversa da potenciação
Exemplos
Potenciação------------------------radiciação
a) 7² = 49 ---------------------------- √49= 7
b) 2³= 8 ------------------------------ ∛8 = 2
c) 3⁴= 81 ---------------------------- ∜81 = 3
O sinal √ chamamos de radical
O índice 2 significa : raiz quadrada
O índice 3 significa: raiz cúbica
O índice 4 significa: raiz quarta
assim:
√49= 7 lê-se: raiz quadrada de 49
∛8 = 2 lê-se : raiz cúbica de 8
∜81 = 3 lê-se: raiz quarta de 81
Nota:
Não é necessário o índice 2 no radical para a raiz quadrada
EXERCÍCIOS
1)Descubra o número que :
a) elevado ao quadrado dá 9
b) elevado ao quadrado dá 25
c) elevado ao quadrado dá 49
d) elevado ao cubo dá 8
2) Quanto vale x ?
a) x²= 9 (R:3)
b) x²= 25 (R:5)
c) x²= 49 (R:7)
d) x²= 81 (R:9)
3) Determine a Raiz quadrada:
a) √9 = 3b) √16 = 4
c) √25 = 5
d) √81 = 9
e) √0 = 0
f) √1 = 1
g) √64 = 8
h) √100 = 10
4) Resolva as expressões abaixo:
a) √16 + √36 = 4 + 6 = 10
b) √25 + √9 = 5 + 3 = 8
c) √49 - √4 = 7 - 2 = 5
d) √36- √1 = 6 - 1 = 5
e) √9 + √100 = 3 + 10 = 13
f) √4 x √9 = 2 x 3 = 6
PROPRIEDADES DA POTENCIAÇÃO
Primeira propriedade
Multiplicação de potências de mesma base
Ao multiplicar potências de mesma base, repetimos a base e somamos os expoentes.
exemplos
3² x 3⁵ = 3²⁺⁵ = 3⁷
conclusão:
conservamos a base e somamos os expoentes.
EXERCÍCIOS
1) Reduza a uma só potência
a) 4³ x 4 ²= 4⁵
b) 7⁴ x 7⁵ = 7⁹
c) 2⁶ x 2²= 2⁸
d) 6³ x 6 = 6⁴
e) 3⁷ x 3² = 3⁹
f) 9³ x 9 = 9⁴
g) 5 x 5² = 5³
h) 7 x 7⁴ = 7⁵
i) 6 x 6 = 6²
j) 3 x 3 = 3²
l) 9² x 9⁴x 9 = 9⁷
m) 4 x 4² x 4 = 4⁴
n) 4 x 4 x 4= 4³
0) m⁰ x m x m³ = m⁴
p) 15 x 15³ x 15⁴x 15 = 15⁹
2) Reduza a uma só potência:
a) 7² x 7⁶ = 7⁸
b) 2² x 2⁴= 2⁶
c) 5 x 5³ = 5⁴
d) 8² x 8 = 8³
e) 3⁰ x 3⁰ = 3⁰
f) 4³ x 4 x 4² = 4⁶
g) a² x a² x a² = a⁶
h) m x m x m² = m⁴
i) x⁸ . x . x = x¹⁰
j) m . m . m = m³
Segunda Propriedade
Divisão de Potência de mesma base
Ao dividir potências de mesma base, repetimos a base e subtraímos os expoentes.
Exemplo
a) 8⁹: 8² = 8⁹⁻² = 8⁷
b) 5⁴ : 5 = 5⁴⁻¹ = 5³
conclusão : conservamos a base e subtraimos os expoentes
EXERCÍCIOS
1) Reduza a uma só potência
a) 5⁴ : 5² = 5²
b) 8⁷ : 8³ = 8⁴
c) 9⁵ : 9² = 9³
d) 4³ : 4² = 4¹e) 9⁶ : 9³ = 9³
f) 9⁵ : 9 = 9⁴
g) 5⁴ : 5³ = 5¹
h) 6⁶ : 6 = 6⁷
i) a⁵ : a³ = a²
j) m² : m = m¹
k) x⁸ : x = x⁷
l) a⁷ : a⁶ = a¹
2) Reduza a uma só potência:
a) 2⁵ : 2³ =
b) 7⁸ : 7³=
c) 9⁴ : 9 =
d) 5⁹ : 5³ =
e) 8⁴ : 8⁰ =
f) 7⁰ : 7⁰ =
Teceira Propriedade
Potência de Potência
Ao elevar uma potência a um outro expoente, repetimos a base e multiplicamos os expoentes.
(7²)³ = 7²΄³ = 7⁶
conclusão: conservamos a base e multiplicamos os expoentes.
EXERCÍCIOS
1) Reduza a uma só potência:
a) (5⁴)²
b) (7²)⁴
c) (3²)⁵
d) (4³)²
e) (9⁴)⁴
f) (5²)⁷
g) (6³)⁵
h) (a²)³
i) (m³)⁴
j) (m³)⁴
k) (x⁵)²
l) (a³)⁰
m) (x⁵)⁰
2) Reduza a uma só potência:
a) (7²)³ =
b) (4⁴)⁵ =
c) (8³)⁵ =
d) (2⁷)³ =
e) (a²)³ =
f) (m³)⁴ =
g) (a⁴)⁴ =
h) (m²)⁷ =
EXPRESSÕES NUMÉRICAS COM POTENCIAÇÃO
Para resolver uma expressão numérica, efetuamos as operações obedecendo à seguinte ordem :
1°) Potenciação
2°) Multiplicações e divisões
3°) Adições e Subtrações
EXEMPLOS
1) 5 + 3² x 2 =
= 5 + 9 x 2 =
= 5 + 18 =
= 23
2) 7² - 4 x 2 + 3 =
= 49 – 8 + 3 =
= 41 + 3 =
= 44
Há expressões onde aparecem os sinais de associação e que devem ser eliminados nesta ordem:
1°) parênteses ( )
2°) colchetes [ ]
3°) chaves { }
exemplos
1°) 40 – [5² + ( 2³ - 7 )] =
= 40 – [5² + ( 8 - 7 )]
= 40 – [25 + 1 ]=
= 40 – 26 =
= 14
2°) 50 –{ 15 + [ 4² : ( 10 – 2 ) + 5 x 2 ] } =
= 50 –{ 15 + [ 16 : 8 + 10 ]}=
= 50 – { 15 + [ 2 + 10 ] } =
= 50 – { 15 +12 } =
= 50 – 27 =
= 23
Exercícios
1) Calcule o valor das expressões:
a) 7² - 4 = (R:45)
b) 2³ + 10 = (R:18)
c) 5² - 6 = (R:19)
d) 4² + 7⁰= (R:17)e) 5⁰+ 5³= (R: 126)
f) 2³+ 2⁴ = (R: 24)
g) 10³ - 10² = (R: 900)
h) 80¹ + 1⁸⁰ = (R: 81)
i) 5² - 3² = (R: 16)
j) 1⁸⁰ + 0⁷⁰ = (R: 1)
2) Calcule
a) 3² + 5 = (R: 14)b) 3 + 5² = (R: 28)
c) 3² + 5² = (R: 34)
d) 5² - 3² = (R: 16)
e) 18 - 7⁰ = (R: 17)f) 5³ - 2² = (R: 121)
g) 10 + 10² = (R: 110)
h) 10³ - 10² = (R: 900)
i) 10³ - 1¹ = (R: 999)
3) Calcule o valor das expressões
a) 2³ x 5 + 3² = (R: 49)
b) 70⁰+ 0⁷⁰ - 1 = (R: 0 )
c) 3 x 7¹ - 4 x 5⁰ = (R: 17)
d) 3⁴- 2⁴: 8 – 3 x 4 = (R: 67)
e) 5² + 3 x 2 – 4 = (R: 27)
f) 5 x 2² + 3 – 8 = (R: 15)
g) 5² - 3 x 2² - 1 = (R: 12)
h) 16 : 2 – 1 + 7² = (R: 56)
4) calcule o valor das expressões:
a) 5² : ( 5 +1 -1)+ 4 x 2 = (R: 13)
b) (3 +1)² +2 x 5 - 10⁰ = (R: 25)
c) c) 3²: ( 4 – 1) + 3 x 2² = (R: 15)
d) 70 –[ 5 x (2² : 4) + 3²] = (R: 56)
e) ( 7 + 4) x ( 3² - 2³) = (R: 11)
f) 5² + 2³ - 2 x (3 + 9) = (R: 9)
g) 6² : 3² + 4 x 10 – 12 = (R: 32)
h) (7² - 1 ) : 3 + 2 x 5 = (R: 26)
5) calcule o valor das expressões:
a) 5 + 4²- 1 = (R: 20)
b) 3⁴ - 6 + 2³ = (R: 83)
c) 2⁵ - 3² + 1⁹ = (R: 24)
d) 10²- 3² + 5 = (R: 96)e) 11² - 3² + 5 = (R: 117)
f) 5 x 3² x 4 = (R: 180)
g) 5 x 2³ + 4² = (R: 56)
h) 5³ x 2² - 12 = (R: 488)
6) Calcule o valor das expressões:
a) ( 4 + 3)² - 1 = (R: 48)
b) ( 5 + 1 )² + 10 = (R: 46)
c) ( 9 – 7 )³ x 8 = (R: 64)
d) ( 7² - 5²) + ( 5² - 3 ) = (R: 46)e) 6² : 2 - 1⁴ x 5 = (R: 13)
f) 3² x 2³ + 2² x 5² = (R: 172)
7) Calcule o valor das expressões:
a) 4²- 10 + (2³ - 5) = (R: 9)b) 30 – (2 + 1)²+ 2³ = (R: 29)
c) 30 + [6² : ( 5 – 3) + 1 ] = (R: 49)
d) 20 – [6 – 4 x( 10 - 3²) + 1] = (R: 17)
e) 50 + [ 3³ : ( 1 + 2) + 4 x 3] = (R: 71)f) 100 –[ 5² : (10 – 5 ) + 2⁴ x 1 ] = (R: 79)
g) [ 4² + ( 5 – 3)³] : ( 9 – 7)³ = (R: 3 )h) 7²+ 2 x[(3 + 1)² - 4 x 1³] = (R: 73)
i) 25 + { 3³ : 9 +[ 3² x 5 – 3 x (2³- 5¹)]} = (R: 64)
8) Calcule as expressões:
a) ( 8 : 2) . 4 + {[(3² - 2³) . 2⁴ - 5⁰] . 4¹}= (R:76)
b) ( 3² - 2³) . 3³ - 2³ + 2² . 4² = ( R:83)
c) ( 2⁵ - 3³) . (2² - 2 ) = (R: 10)
d) [2 . (10 - 4² : 2) + 6²] : ( 2³ - 2²) = ( R:10)
e) (18 – 4 . 2) . 3 + 2⁴ . 3 - 3² . ( 5 – 2) = (R: 51)
f) 4² . [2⁴ : ( 10 – 2 + 8 ) ] + 2⁰ = (R: 17)
g) [( 4² + 2 . 3²) + ( 16 : 8)² - 35]² + 1¹⁰ - 10⁰ = (R : 9)
h) 13 + ( 10 – 8 + (7 – 4)) = (R: 18)
i) (10 . 4 + 18 – ( 2 . 3 +6)) = (R:46)
j) 7 . ( 74 – ( 4 + 7 . 10)) = (R: 0)
k) ( 19 : ( 5 + 3 . 8 – 10)) = (R : 1)
l) (( 2³ + 2⁴) . 3 -4) + 3² = (R: 77)
m) 3 + 2 . ((3²- 2⁰) + ( 5¹ - 2²)) + 1 = (R: 22)
muito bom.
ResponderExcluirtipo amei esse site simplesmente aprendi tudo num pique só...vocês tão de parabéns
ResponderExcluirGostei bastante, vai me ajudar na escola. Precisamos de porf que fassam esses blogs
ResponderExcluirtop dos top
ResponderExcluirMais atenção na resolução. Há erros.
ResponderExcluirSeu cú
Excluirno meu cálculo, a b da questão 5 daria 91.
ResponderExcluirParabéns pelo artigo, ficou muito realmente muito prático e bem explicado.
Dá 83 mesmo, resolvendo as potência ficam assim: 81-6+8= 83
ExcluirOla, você poderia, por favor, solucionar a expressão a seguir: -6²:(17+1)+(-4)³:(-2)⁵-[3²-(-1)⁵.(-5)]?
ResponderExcluirOlá tudo bom? Acabei de fazer sua expressão numérica e se não me engano deu +20. Vê se deu certo aí, falou.
ExcluirResposta: (0)
Excluir-4
Excluir108
ExcluirCara me ajudou mt vou passar em matemática muito obrigado ✨✌🏼️Explicaram melhor do Q a minha professora✨👍🏻✌🏼️
ResponderExcluirMe ajudaram mto 👏👍✌
ResponderExcluir8) Calcule as expressões:i) (10 . 4 + 18 – ( 2 . 3 +6)) = (R:46)
ResponderExcluir(10×4+18-(2×3+6))
Excluir(40+18-(6+6))
58-(6+6)
58-12
=46
Show de bola!
ResponderExcluirMuito obrigado por enquanto.
ResponderExcluirMuito obrigado por enquanto.
ResponderExcluirAmei muito bem explicado. Uma Boa aula de reforço.
ResponderExcluirAmei muito bem explicado. Uma Boa aula de reforço.
ResponderExcluirMuito bom quando vejo minha professora explicando eu não entendo nada mas lendo isso já entendi tudo
ResponderExcluirG)[( 4² + 2 . 3²) + ( 16 : 8)² - 35]² + 1¹⁰ - 10⁰ =
ResponderExcluir= [( 16 + 2 . 9 ) + 2² - 35 ]² + 1¹⁰ - 10⁰ =
= [( 16 + 18 ) + 2² - 35 ]² + 1¹⁰ - 10⁰ =
= [ 34 + 2² - 35 ]² + 1¹⁰ - 10⁰ =
= [ 34 + 4 - 35 ]² + 1¹⁰ - 10⁰ =
= 4² + 1¹⁰ - 10⁰ =
= 16 + 1 - 1 =
= 16
vc ta muito estudioso viu mano, professor wellington aqui
Excluirvc ta muito estudioso viu mano, professor wellington aqui
Excluir?...resultado 9
ExcluirO resultado é 9
ExcluirEsta conta tá uma bosta
ExcluirAqui é bandido
Excluir= [ 34 + 4 - 35 ]² + 1¹⁰ - 10⁰ = = 3² + 1¹⁰ - 10⁰ = = 9 + 1 - 1 =
Excluir= 9
Muito obrigado vc mim ajudou a melhorar em matemática
ResponderExcluirPreciso de ajuda pra fazer um trabalho de matemática sobre expressões numéricas,poderiam me ajuadr por gentileza. Obrigada!
ResponderExcluirOlá
ResponderExcluirExpressões como (5+1)ao quadrado não seria um produto notável?
Obrigada
Olá
ResponderExcluirExpressões como (5+1)ao quadrado não seria um produto notável?
Obrigada
não, para ser produto notável tem que ter uma variável (a.b,x,...)
Excluirf) 100 –[ 5² : (10 – 5 ) + 2⁴ x 1 ] = (R: 79)GOSTARIA DE VER ESSA QUESTÃO RESOLVIDA, GOSTARIA DE TIRAR UMA DUVIDA. OBRIGADA
ResponderExcluirEste comentário foi removido pelo autor.
Excluir= 100-[25:5+16]
Excluir=100-[5+16]
=100-21
=79
Muito bom e pratico
ResponderExcluirEste comentário foi removido pelo autor.
ResponderExcluirEste comentário foi removido pelo autor.
ResponderExcluirEste comentário foi removido pelo autor.
ResponderExcluirRuim m mm mm mm
ResponderExcluirMmmmmmmuuuuuuuuuuiiiiiiiitttttttttooooooo ruuuuuuuiiiiiiinnnnnn
Alguém pode me ajudar raiz cubica de 3.5.= ?
ResponderExcluirAmei todas
ResponderExcluirAdorei a página, me ajudou muito. Por favor poderia verificar a questão (H) do exercício (7). Obrigado!
ResponderExcluir7²+2.[(3+1)²-4.1³]=73
49+2.[9+1-4.1]=73
49+2.[9+1-4]=73
49+2.6= 73
49+12=
61#73
Alguém sabe a soma da questão (M) por favor?
ResponderExcluirObrigada. Show
ResponderExcluirQuanto é quanto é (x elevado a quarta potencia • x² • x3)² : por (x elevado a quarta potencia) elevado a quinta potencia, com x ≠ 0
ResponderExcluir[100÷2ao quadrado+10×(10-2×3
ResponderExcluirMuito bom o conteúdo!
ResponderExcluirnao entendi
ResponderExcluiramei a explicaçao
ResponderExcluir