terça-feira, 21 de janeiro de 2020

Representação Matricial de um Sistema

Um sistema de equações pode ser representado na forma de uma matriz. Os coeficientes das incógnitas serão os elementos da matriz que ocuparão as linhas e as colunas de acordo com o posicionamento dos termos no sistema. O sistema terá a seguinte representação matricial: .


Observe mais alguns sistemas representados por matrizes.

Exemplo 1

Sistema de equações com três equações e três incógnitas: x, y e z.

Representação matricial



Exemplo 2
Sistema de equações
Representação matricial


Essa relação entre sistemas de equações e matrizes fora estabelecida no intuito de determinar o valor das incógnitas através de técnicas envolvendo cálculo de determinantes de matrizes. Nesses casos, o método utilizado é a resolução de acordo com a Regra de Cramer, que consiste na relação entre a matriz dos coeficientes das incógnitas e a matriz dos coeficientes independentes, descartando a matriz das variáveis.
Matriz dos coeficientes
A regra de Cramer estabelece que, se D ≠ 0 temos:
x = Dx/D
y = Dy/D
z = Dz/D

No caso desse sistema obtemos as seguintes matrizes:
Na matriz Dx, a coluna dos coeficientes de x foi substituída pelos coeficientes independentes.

Na matriz Dy, a coluna dos coeficientes de y foi substituída pelos coeficientes independentes.

Na matriz Dz, a coluna dos coeficientes de z foi substituída pelos coeficientes independentes.

x = Dx/D → –8/–8 = 1
y = Dy/D → –16/–8 = 2
z = Dz/D → 8 / –8 = –1


A solução do sistema é x = 1, y = 2 e z = –1.
www.mundoeducacao.com.br

Nenhum comentário:

Postar um comentário